Citation: Dong Dao-Qing, Hao Shuang-Hong, Zhang Hui, Wang Zu-Li. Transformation of aldehydes or alcohols to amides at room temperature under aqueous conditions[J]. Chinese Chemical Letters, ;2017, 28(7): 1597-1599. doi: 10.1016/j.cclet.2017.03.008 shu

Transformation of aldehydes or alcohols to amides at room temperature under aqueous conditions

Figures(2)

  • A novel and efficient method for the synthesis of amide has been developed. The reactions proceeded smoothly under aqueous conditions at room temperature and generated the corresponding products in good to excellent yields. It is worth noting that alkyl amines which did not react in known approaches are well tolerated in our system.
  • 加载中
    1. [1]

      (a) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Analysis of the reactions used for the preparation of drug candidate molecules, Org. Biomol. Chem. 4(2006) 2337-2347;
      (b) E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38(2009) 606-631;
      (c) K. Ekoue-Kovi, C. Wolf, One-pot oxidative esterification and amidation of aldehydes, Chem. Eur. J. 14(2008) 6302-6315;
      (d) J. M. Humphrey, A. R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides, Chem. Rev. 97(1997) 2243-2266.

    2. [2]

      (a) B. Shen, D. M. Makley, J. N. Johnston, Umpolung reactivity in amide and peptide synthesis, Nature 465(2010) 1027-1032;
      (b) H. A. Soliman, A. Y. Mubarak, S. S. Elmorsy, An efficient synthesis of bis(indolyl) methanes and N, N'-alkylidene bisamides by silzic under solvent free conditions, Chin. Chem. Lett. 27(2016) 353-356;
      (c) W. Tang, J. Guo, X. Gui, D. Han, J. Li, An efficient synthesis of imidodicarbonic diamides from 1, 3-thiazetidin-2-ones with NH2OH HCl via ring-opening reaction, Chin. Chem. Lett. 26(2015) 85-88;
      (d) H. Liu, J. Liu, Y. Zhang, C. Shao, J. Yu, Copper-catalyzed amide bond formation from formamides and carboxylic acids, Chin. Chem. Lett. 26(2015) 11-14.

    3. [3]

      Valeur E., Bradley M.. Amide bond formation: beyond the myth of coupling reagents[J]. Chem. Soc. Rev., 2009,38:606-631. doi: 10.1039/B701677H

    4. [4]

      (a) S. H. Cho, E. J. Yoo, I. Bae, S. Chang, Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water, J. Am. Chem. Soc. 127(2005) 16046-16047;
      (b) M. P. Cassidy, J. Raushel, V. V. Fokin, Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides, Angew. Chem. Int. Ed. 45(2006) 3154-3157;
      (c) S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, et al. , Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides, J. Org. Chem. 77(2012) 8007-8015.

    5. [5]

      Li G.L., Kung K.K.Y., Wong M.K.. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium[J]. Chem. Commun., 2012,48:4112-4114. doi: 10.1039/c2cc17689k

    6. [6]

      Gnanaprakasam B., Milstein D.. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions[J]. J. Am. Chem. Soc., 2011,133:1682-1685. doi: 10.1021/ja109944n

    7. [7]

      (a) Y. Li, L. Ma, F. Jia, Z. Li, Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides, J. Org. Chem. 78(2013) 5638-5646;
      (b) A. Porcheddu, L. D. Luca, Iron-catalyzed amidation of aldehydes with Nchloroamines, Adv. Synth. Catal. 354(2012) 2949-2953.

    8. [8]

      Morimoto H., Fujiwara R., Shimizu Y., Morisaki K., Ohshima T.. Lanthanum(Ⅲ) triflate catalyzed direct amidation of esters[J]. Org. Lett., 2014,16:2018-2021. doi: 10.1021/ol500593v

    9. [9]

      (a) X. Liu, K. F. Jensen, Multistep synthesis of amides from alcohols and amines in continuous flow microreactor systems using oxygen and urea hydrogen peroxide as oxidants, Green Chem. 15(2013) 1538-1541;
      (b) B. Du, B. Jin, P. Sun, The syntheses of (-ketoamides via nBu4NI-catalyzed multiple sp3C-H bond oxidation of ethylarenes and sequential coupling with dialkylformamides, Org. Biomol. Chem. 12(2014) 4586-4589;
      (c) W. Mai, H. Wang, Z. Li, et al. , nBu4NI-catalyzed direct synthesis of (-ketoamides from aryl methyl ketones with dialkylformamides in water using TBHP as oxidant, Chem. Commun. 48(2012) 10117-10119.

    10. [10]

      Yang S., Yan H., Ren X.. Copper-catalyzed dehydrogenative reaction: synthesis of amide from aldehydes and aminopyridine[J]. Tetrahedron, 2013,69:6431-6435. doi: 10.1016/j.tet.2013.05.072

    11. [11]

      Dai W., Liu Y., Tong T., Li X., Luo F.. Rh(Ⅲ)-catalyzed oxidative amidation of aldehydes: an efficient route to N-pyridinamides and imides[J]. Chin. J. Catal., 2014,35:1012-1016. doi: 10.1016/S1872-2067(14)60141-8

    12. [12]

      Patel O.P.S., Anand D., Maurya R.K., Yadav P.P.. Copper-catalyzed highly efficient oxidative amidation of aldehydes with 2-aminopyridines in an aqueous micellar system[J]. Green Chem., 2015,17:3728-3732. doi: 10.1039/C5GC00628G

  • 加载中
    1. [1]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    2. [2]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    5. [5]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    8. [8]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    9. [9]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    12. [12]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    13. [13]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    14. [14]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    15. [15]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    16. [16]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    17. [17]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    18. [18]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    19. [19]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    20. [20]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

Metrics
  • PDF Downloads(3)
  • Abstract views(750)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return