Citation: An Zhen-Zhen, Li Zhuang, Guo Yong-Yang, Chen Xiao-Ling, Zhang Kang-Ning, Zhang Dong-Xia, Xue Zhong-Hua, Zhou Xi-Bin, Lu Xiao-Quan. Preparation of chitosan/N-doped graphene natively grown on hierarchical porous carbon nanocomposite as a sensor platform for determination of tartrazine[J]. Chinese Chemical Letters, ;2017, 28(7): 1492-1498. doi: 10.1016/j.cclet.2017.02.014 shu

Preparation of chitosan/N-doped graphene natively grown on hierarchical porous carbon nanocomposite as a sensor platform for determination of tartrazine

Figures(7)

  • In this work, the chitosan and N-doped graphene natively grown on hierarchical porous carbon (N-PC-G/CS) nanocomposite was obtained by ultrasonic method, as a novel sensor platform for determination of tartrazine (TT). The nanocomposite as prepared had well dispersivity in water and excellent conductivity. The N-PC-G/CS nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption, fourier transform infrared (FTIR) and electrochemical impedance spectroscopy (EIS). The application of N-PC-G/CS for determination of tartrazine (TT) was investigated by chronocoulometry (CC), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a sensitive response to TT within a wide concentration range of 0.05-15.0μmol/L, the detection limits is 0.036 μmol/L (S/N=3). Furthermore, this nanocomposite could be efficiently applied for determination of TT in soft drink samples.
  • 加载中
    1. [1]

      Nevado J.J.B., Cabanillas C.G., Salcedo A.M.C.. Simultaneous spectrophotometric determination of three food dyes by using the first derivative of ratio spectra[J]. Talanta, 1995,42:2043-2051. doi: 10.1016/0039-9140(95)01695-3

    2. [2]

      Rowe K.S., Rowe K.J.. Synthetic food coloring and behavior: a dose response effect in a double-blind placebo-controlled, repeated-measures study[J]. J. Pediatr., 1994,125:691-698. doi: 10.1016/S0022-3476(06)80164-2

    3. [3]

      Borzelleca J.F., Hallagan J.B.. Chronic toxicity/carcinogenicity studies of FD & C Yellow No. 5(tartrazine) in rats[J]. Food Chem. Toxicol., 1988,26:179-187. doi: 10.1016/0278-6915(88)90117-2

    4. [4]

      Tanaka T.. Reproductive and neurobehavioural toxicity study of Ponceau 4R administered to mice in the diet[J]. Food Chem. Toxicol., 2006,44:1651-1658. doi: 10.1016/j.fct.2006.05.001

    5. [5]

      European Parliament and Council Directive 94/36/EC . Council directive 94/43/EC of 27 July 1994 establishing annex VI to directive 91/414/EEC concerning the placing of plant protection products on the market[J]. Off. J. L, 1994,227:31-55.  

    6. [6]

      Minioti K.S., Sakellariou C.F., Thomaidis N.S.. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector[J]. Anal. Chim. Acta, 2007,583:103-110. doi: 10.1016/j.aca.2006.10.002

    7. [7]

      Berzas J.J., Flores J.R., Llerena M.J.V., Farinas N.R.. Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products[J]. Anal. Chim. Acta, 1999,391:353-364. doi: 10.1016/S0003-2670(99)00215-9

    8. [8]

      Din? E., Baydan E., Kanbur M., Onur F.. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods[J]. Talanta, 2002,58:579-594. doi: 10.1016/S0039-9140(02)00320-X

    9. [9]

      Yamada M., Nakamura M., Yamada T., Maitani T., Goda Y.. Structural determination of unknown subsidiary colors in food yellowNO.5(Sunset Yellow FCF)[J]. Chem. Pharm. Bull., 1996,44:1624-1627. doi: 10.1248/cpb.44.1624

    10. [10]

      Zou T.T., He P.L., Yasen A., Li Z.. Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors[J]. Food Chem., 2013,138:1742-1748. doi: 10.1016/j.foodchem.2012.11.084

    11. [11]

      Cheng Q., Xia S.H., Tong J.H., Wu K.B.. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon[J]. Anal. Chim. Acta, 2015,887:75-81. doi: 10.1016/j.aca.2015.06.013

    12. [12]

      Qiu X.L., Lu L.M., Leng J.. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine[J]. Food Chem., 2016,190:889-895. doi: 10.1016/j.foodchem.2015.06.045

    13. [13]

      Wang M.L., Zhao J.W.. A facile method used for simultaneous determination of Ponceau 4R, allura red and Tartrazine in alcoholic beverages[J]. J. Electrochem. Soc., 2015,162:H321-H327. doi: 10.1149/2.0111506jes

    14. [14]

      Song X.J., Shi Z., Tan X.. One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine[J]. Sens. Actuators B Chem., 2014,197:104-108. doi: 10.1016/j.snb.2014.02.064

    15. [15]

      Liang J., Du X., Gibson C., Du X.W., Qiao S.Z.. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Adv. Mater., 2013,25:6226-6231. doi: 10.1002/adma.201302569

    16. [16]

      Li Z., An Z.Z., Guo Y.Y.. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite[J]. Talanta, 2016,161:713-720. doi: 10.1016/j.talanta.2016.09.033

    17. [17]

      Zhang Y., Su M., Ge L.. Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay[J]. Carbon, 2013,57:22-33. doi: 10.1016/j.carbon.2013.01.012

    18. [18]

      Janegitz B.C., Marcolino-Junior L.H., Campana-Filho S.P., Faria R.C., FatibelloFilho O.. Anodic stripping voltammetric determination of copper(Ⅱ) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan[J]. Sens. Actuators B Chem., 2009,142:260-266. doi: 10.1016/j.snb.2009.08.033

    19. [19]

      Ling S.J., Yuan R., Chai Y.Q., Zhang T.T.. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles compositemembrane/Prussian blue modified gold electrode[J]. Bioprocess Biosyst. Eng., 2009,32:407-414. doi: 10.1007/s00449-008-0260-2

    20. [20]

      Batra B., Pundir C.S.. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode[J]. Biosens. Bioelectron., 2013,47:496-501. doi: 10.1016/j.bios.2013.03.063

    21. [21]

      Darmstadt H., Roy C., Kaliaguine S., Choi S.J., Ryoo R.. Surface chemistry of ordered mesoporous carbons[J]. Carbon, 2002,40:2673-2683. doi: 10.1016/S0008-6223(02)00187-2

    22. [22]

      Thomas A., Fischer A., Goettmann F.. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. J. Mater. Chem., 2008,18:4893-4908. doi: 10.1039/b800274f

    23. [23]

      Zheng Y., Jiao Y., Chen J.. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction[J]. J. Am. Chem. Soc., 2011,133:20116-20119. doi: 10.1021/ja209206c

    24. [24]

      Liang J., Zheng Y., Chen J.. Facile oxygen reduction on a threedimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angew. Chem., 2012,51:3892-3896. doi: 10.1002/anie.v51.16

    25. [25]

      Thein-Han W.W., Misra R.D.K.. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering[J]. Acta Biomater., 2009,5:1182-1197. doi: 10.1016/j.actbio.2008.11.025

    26. [26]

      Venkatesan J., Qian Z.J., Ryu B., Kumar N.A., Kima S.K.. Preparation and characterization of carbon nanotube-grafted-chitosan-natural hydroxyapatite composite for bone tissue engineering[J]. Carbohyd. Polym., 2011,83:569-577. doi: 10.1016/j.carbpol.2010.08.019

    27. [27]

      Anson F.C.. Application of potentiostatic current integration to the study of the adsorption of cobalt (Ⅲ)-(ethylenedinitrilo(tetraacetate) on mercury electrodes[J]. Anal. Chem., 1964,36:932-934. doi: 10.1021/ac60210a068

    28. [28]

      R.N. Adams, Electrochemistry at Solid Electrodes, Marcel Dekker Inc., New York, 1969.

    29. [29]

      Zhang J., Wang X., Zhang S.B.. An electrochemical sensor for simultaneous determination of ponceau 4R and tartrazine based on an ionic liquid modified expanded graphite paste electrode[J]. J. Electrochem. Soc., 2014,161:H453-H457. doi: 10.1149/2.0271409jes

    30. [30]

      Meng Y., Gu D., Zhang F.Q., Shi Y.F.. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angew. Chem., 2005,117:7215-7221. doi: 10.1002/(ISSN)1521-3757

  • 加载中
    1. [1]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    2. [2]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    3. [3]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    4. [4]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    5. [5]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    6. [6]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    7. [7]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    8. [8]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    9. [9]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    10. [10]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    11. [11]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    12. [12]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    13. [13]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    14. [14]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    15. [15]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    16. [16]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

Metrics
  • PDF Downloads(2)
  • Abstract views(756)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return