Citation: Zhao Chun-Ling, Hua Mei, Yang Can-Yu, Yang Yun-Hui. A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor[J]. Chinese Chemical Letters, ;2017, 28(7): 1417-1423. doi: 10.1016/j.cclet.2017.02.010 shu

A novel aptasensor based on 3D-inorganic hybrid composite as immobilized substrate for sensitive detection of platelet-derived growth factor

  • Corresponding author: Yang Yun-Hui, yyhui2002@aliyun.com
  • Received Date: 9 November 2016
    Revised Date: 14 January 2017
    Accepted Date: 6 February 2017
    Available Online: 24 July 2017

Figures(7)

  • A novel electrochemical detection approach for platelet-derived growth factor (PDGF) via "sandwich" structure is reported in this paper. 3D-4MgCO3·Mg(OH)2·4H2O-Au NPs inorganic hybrid composite was utilized as immobilized substrate for sensitive PDGF detection and Pt-Au bimetallic nanoparticles were labelled on PDGF aptamer to indirectly detect PDGF for the first time. The proposed aptasensor exhibited a high catalytic efficiency towards reduction of H2O2, hence the sensitive detection of PDGF was achieved. Results showed that the aptasensor exhibited excellent linear response to PDGF, in the range of 0.1 pg/mL-10 ng/mL (4 fmol/L-400 pmol/L), with detection limit of 0.03 pg/mL (1.2 fmol/L).
  • 加载中
    1. [1]

      Sun Y.H., Cai S., Lau C.W., Zhu J.H., Lu J.Z.. Novel PDGF aptasensor based on gold nanoparticle triggered chemiluminescence[J]. Procedia Eng., 2011,25:1565-1568. doi: 10.1016/j.proeng.2011.12.387

    2. [2]

      Bunka D.H.J., Stockley P.G.. Aptamers come of age—at last[J]. Nat. Rev. Microbiol., 2006,4:588-596. doi: 10.1038/nrmicro1458

    3. [3]

      Willner I., Zayats M.. Electronic aptamer-based sensors[J]. Angew. Chem. Int. Ed., 2007,46:6408-6418. doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Ellington A.D., Szostak J.W.. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990,346:818-822. doi: 10.1038/346818a0

    5. [5]

      Tuerk C., Gold L.. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990,249:505-510. doi: 10.1126/science.2200121

    6. [6]

      Jayasena S.D.. Aptamers: an emerging class of molecules that rival antibodies in diagnostics[J]. Clin. Chem., 1999,45:1628-1650.  

    7. [7]

      Patel D.J., Suri A.K.. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics[J]. Rev. Mol. Biotechnol., 2000,74:39-60. doi: 10.1016/S1389-0352(99)00003-3

    8. [8]

      Clark S.L., Remcho V.T.. Aptamers as analytical reagents[J]. Electrophoresis, 2002,23:1335-1340. doi: 10.1002/(ISSN)1522-2683

    9. [9]

      Luzi E., Minunni M., Tombelli S., Mascini M.. New trends in affinity sensing: aptamers for ligand binding[J]. TrAC Trends. Anal. Chem., 2003,22:810-818. doi: 10.1016/S0165-9936(03)01208-1

    10. [10]

      You K.M., Lee S.H., Im A., Lee S.B.. Aptamers as functional nucleic acids: in vitro selection and biotechnological applications[J]. Biotechnol. Bioprocess Eng., 2003,8:64-75. doi: 10.1007/BF02940259

    11. [11]

      Huang C.C., Huang Y.F., Cao Z.H., Tan W.H., Chang H.T.. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors[J]. Anal. Chem., 2005,77:5735-5741. doi: 10.1021/ac050957q

    12. [12]

      Huang B., Tong F.Y., Chen Y.T.. Fabrication and bioproperties of raspberrytype hybrid nanoparticles of Au-thioethyl pendant Ligand@Chitosan[J]. J. Biomed. Nanotechnol., 2013,9:115-123. doi: 10.1166/jbn.2013.1476

    13. [13]

      Leng C., Lai G.S., Yan F., Ju H.X.. Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip[J]. Anal. Chim. Acta, 2010,666:97-101. doi: 10.1016/j.aca.2010.03.060

    14. [14]

      Katiyar N., Selvakumar L.S., Patra S., Thaku M.S.. Gold nanoparticles based colorimetric aptasensor for theophylline[J]. Anal. Methods, 2013,5:653-659. doi: 10.1039/C2AY26133B

    15. [15]

      Tang D.P., Ren J.J.. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels[J]. Anal. Chem., 2008,80:8064-8070. doi: 10.1021/ac801091j

    16. [16]

      Wiglusz R.J., Kedziora A., Lukowiak A., Doroszkiewicz W., Strek W.. Hydroxyapatites and europium(Ⅲ) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity[J]. J. Biomed. Nanotechnol., 2012,8:605-612. doi: 10.1166/jbn.2012.1424

    17. [17]

      Li F., Feng Y., Wang Z.. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate?gold nanoparticles inorganic hybrid composite[J]. Biosens. Bioelectron., 2010,25:2244-2248. doi: 10.1016/j.bios.2010.03.006

    18. [18]

      Cai W.Y., Xu Q., Zhao X.N., Zhu J.J., Chen H.Y.. Porous gold-nanoparticle-CaCO3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry[J]. Chem. Mater., 2006,18:279-284. doi: 10.1021/cm051442i

    19. [19]

      Song X.F., Yang C., Wang J., Sun S.Y., Yu J.G.. Synthesis of porous hydromagnesite microspheres with rosette-like morphology[J]. Chin. J. Inorg. Chem., 2011,27:1008-1014.  

    20. [20]

      Zhang H., Yin Y.J., Hu Y.J.. Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation[J]. J. Phys. Chem. C, 2010,114:11861-11867.

    21. [21]

      Fu X.M., Liu Z.J., Cai S.X.. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters[J]. Chin. Chem. Lett., 2016,27:920-926. doi: 10.1016/j.cclet.2016.04.014

    22. [22]

      Degefa T.H., Kwak J.. Label-free aptasensor for platelet-derived growth factor (PDGF) protein[J]. Anal. Chim. Acta., 2008,613:163-168. doi: 10.1016/j.aca.2008.03.010

    23. [23]

      Lai R.Y., Plaxco K.W., Heeger A.J.. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum[J]. Anal. Chem., 2007,79:229-233. doi: 10.1021/ac061592s

    24. [24]

      Zhou L., Ou L.J., Chu X., Shen G.L., Yu R.Q.. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J]. Anal. Chem., 2007,79:7492-7500. doi: 10.1021/ac071059s

    25. [25]

      Zhang Y.L., Huang Y., Jiang J.H., Shen G.L., Yu R.Q.. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step reusable, sensitive protein detection[J]. J. Am. Chem. Soc., 2007,129:15448-15449. doi: 10.1021/ja0773047

    26. [26]

      Wang J., Meng W.Y., Zheng X.F., Liu S.L., Li G.X.. Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor[J]. Biosens. Bioelectron., 2009,24:1598-1602. doi: 10.1016/j.bios.2008.08.030

    27. [27]

      Deng K., Xiang Y., Zhang L.Q., Chen Q.H., Fu W.L.. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry[J]. Anal. Chim. Acta., 2013,759:61-65. doi: 10.1016/j.aca.2012.11.018

    28. [28]

      Bai L.J., Yuan R., Chai Y.Q.. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets[J]. Biomaterials, 2012,33:1090-1096. doi: 10.1016/j.biomaterials.2011.10.012

    29. [29]

      Chai Y., Tian D.Y., Gu J., Cui H.. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe[J]. Analyst., 2011,136:3244-3251. doi: 10.1039/c1an15298j

    30. [30]

      Yang X.H., Sun S., Liu P.. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles[J]. Chin. Chem. Lett., 2014,25:9-14. doi: 10.1016/j.cclet.2013.10.032

    31. [31]

      Huang K.J., Liu Y.J., Zhai Q.F.. Ultrasensitive biosensing platform based on layered vanadium disulfide-graphene composites coupling with tetrahedronstructured DNA probes and exonuclease Ⅲ assisted signal amplification[J]. J. Mater. Chem. B, 2015,3:8180-8187. doi: 10.1039/C5TB01239B

    32. [32]

      Huang K.J., Shuai H.L., Zhang J.Z.. Ultrasensitive sensing platform for plateletderived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease Ⅲ assisted signal amplification[J]. Biosens Bioelectron., 2016,77:69-75. doi: 10.1016/j.bios.2015.09.026

    33. [33]

      Fang L.X., Huang K.J., Liu Y.. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification[J]. Biosens. Bioelectron., 2015,71:171-178. doi: 10.1016/j.bios.2015.04.031

    34. [34]

      Doron A., Katz E., Willner I.. Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers[J]. Langmuir, 1995,11:1313-1317. doi: 10.1021/la00004a044

    35. [35]

      He W., Liu J.Y., Qiao Y.J.. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction[J]. J. Power Sources, 2010,195:1046-1050. doi: 10.1016/j.jpowsour.2009.09.006

    36. [36]

      Xu J.B., Zhao T.S., Liang Z.X.. Carbon supported platinum?gold alloy catalyst for direct formic acid fuel cells[J]. J. Power Sources, 2008,185:857-861. doi: 10.1016/j.jpowsour.2008.09.039

    37. [37]

      Yi Q.F., Yu W.Q., Niu F.J.. Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation[J]. Electroanalsis, 2010,22:556-563. doi: 10.1002/elan.v22:5

  • 加载中
    1. [1]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    2. [2]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    3. [3]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    4. [4]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    5. [5]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    16. [16]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return