Citation: Ni Xiao-Lei, Liu Jing, Liu Ying-Ya, Leus Karen, Depauw Hannes, Wang An-Jie, Voort Pascal Van Der, Zhang Jian, Hu Yong-Kang. Synthesis, characterization and catalytic performance of Mo based metal-organic frameworks in the epoxidation of propylene by cumene hydroperoxide[J]. Chinese Chemical Letters, ;2017, 28(5): 1057-1061. doi: 10.1016/j.cclet.2017.01.020 shu

Synthesis, characterization and catalytic performance of Mo based metal-organic frameworks in the epoxidation of propylene by cumene hydroperoxide

  • Corresponding author: Liu Jing, liujing@dlut.edu.cn
  • Received Date: 31 August 2016
    Revised Date: 2 December 2017
    Accepted Date: 18 January 2017
    Available Online: 22 May 2017

Figures(4)

  • Two types of Mo containing metal-organic frameworks, denoted as Mo@COMOC-4 and PMA@MIL-101 (Cr), were synthesized respectively by a post-synthetic modification and a ship-in-bottle approach. The catalytic performance of both compounds in the epoxidation of propylene using cumene hydroperoxide (CHP) as oxidant was compared with MoO3@SiO2. A higher conversion (46.2%) and efficiency (87.4%) of CHP was observed for Mo@COMOC-4, whereas the heteropoly acids supported MIL-101 resulted in the decomposition of CHP due to its strong acidic character. Regenerability tests demonstrated that Mo@COMOC-4 could be reused for multiple runs without significant loss in both activity and stability. © 2017 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
  • 加载中
    1. [1]

      Nijhuis T.A., Makkee M., Moulijn J.A., Weckhuysen B.M.. The production of propene oxide:catalytic processes and recent developments[J]. Ind. Eng. Chem. Res., 2006,45:3447-3459. doi: 10.1021/ie0513090

    2. [2]

      Buijink J.K.F., van Vlaanderen J.J.M., Crocker M., Niele F.G.M.. Propylene epoxidation over titanium-on-silica catalyst-the heart of the SMPO process[J]. Catal. Today, 2004,93-95:199-204. doi: 10.1016/j.cattod.2004.06.041

    3. [3]

      Ivanov S., Boeva R., Tanielyan S.. Catalytic epoxidation of propylene with tertbutyl peroxide in presence of molybdenum complexes on polymer carriers[J]. React. Kinet. Catal. Lett., 1976,5:297-301. doi: 10.1007/BF02063039

    4. [4]

      Leonov V.N., Belyi A.A., Stozhkova G.A.. Catalytic properties of molybdenum-siloxane systems in the reaction of epoxidation of propene by cumene hydroperoxide[J]. Bull. Acad. Sci. USSR Div. Chem. Sci., 1988,37:1765-1768. doi: 10.1007/BF00962483

    5. [5]

      Miao Y.X., Lu G.Z., Liu X.H.. Effects of preparation procedure in sol-gel method on performance of MoO3/SiO2 catalyst for liquid phase epoxidation of propylene with cumene hydroperoxide[J]. J. Mol. Catal. A Chem., 2009,306:17-22. doi: 10.1016/j.molcata.2009.02.017

    6. [6]

      Liu J., Ni X.L., Hu Y.K.. Influence of nitridation on the catalytic performance of Ti-MCM-41 for the epoxidation of propene by cumene hydroperoxide[J]. React. Kinet. Mech. Catal., 2015,114:685-695. doi: 10.1007/s11144-014-0803-2

    7. [7]

      Li K.T., Lin P.H., Lin S.W.. Preparation of Ti/SiO2 catalysts by chemical vapor deposition method for olefin epoxidation with cumene hydroperoxide[J]. Appl. Catal. A Gen., 2006,301:59-65. doi: 10.1016/j.apcata.2005.11.012

    8. [8]

      Shen K., Liu X.H., Lu G.Z.. Lewis acid property and catalytic performance of MoO3/SiO2 for propylene epoxidation by CHP:effects of precipitant pH value and rare earth additive[J]. J. Mol. Catal. A Chem., 2013,373:78-84. doi: 10.1016/j.molcata.2013.02.020

    9. [9]

      Miao Y.X., Lu G.Z., Liu X.H.. Mo-functionalized MCF meso-material and its catalytic performance for epoxidation of propylene by cumene hydroperoxide[J]. Micropor. Mesopor. Mater., 2009,122:55-60. doi: 10.1016/j.micromeso.2009.02.010

    10. [10]

      Férey G.. Hybrid porous solids:past present, future[J]. Chem. Soc. Rev., 2008,37:191-214. doi: 10.1039/B618320B

    11. [11]

      Cele M.N., Friedrich H.B., Bala M.D.. Liquid phase oxidation of n-octane to C8 oxygenates over modified Fe-MOF-5 catalysts[J]. Catal. Commun., 2014,57:99-102. doi: 10.1016/j.catcom.2014.08.002

    12. [12]

      Sha S., Yang H., Li J.. Co(Ⅱ) coordinated metal-organic framework:an efficient catalyst for heterogeneous aerobic olefins epoxidation[J]. Catal. Commun., 2014,43:146-150. doi: 10.1016/j.catcom.2013.09.014

    13. [13]

      Yang J.M., Qi Z.P., Kang Y.S., Liu Q., Sun W.Y.. Shape-controlled synthesis and photocatalytic activity of In2O3 nanostructures derived from coordination polymer precursors[J]. Chin. Chem. Lett., 2016,27:492-496. doi: 10.1016/j.cclet.2015.12.031

    14. [14]

      Ding J.W., Wang R.. A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant[J]. Chin. Chem. Lett., 2016,27:655-658. doi: 10.1016/j.cclet.2016.03.005

    15. [15]

      Xu H.Q., Hu J.H., Wang D.K.. Visible-light photoreduction of CO2 in a metal-organic framework:boosting electron? hole separation via electron trap states[J]. J. Am. Chem. Soc., 2015,137:13440-13443. doi: 10.1021/jacs.5b08773

    16. [16]

      Huang G., Chen Y.Z., Jiang H.L.. Metal-organic frameworks for catalysis[J]. Acta Chim. Sinica, 2016,74:113-129. doi: 10.6023/A15080547

    17. [17]

      Brown J.W., Nguyen Q.T., Otto T.. Epoxidation of alkenes with molecular oxygen catalyzed by a manganese porphyrin-based metal-organic framework[J]. Catal. Commun., 2015,59:50-54. doi: 10.1016/j.catcom.2014.09.040

    18. [18]

      Liu Y.Y., Leus K., Bogaerts T.. Bimetallic-organic framework as a zeroleaching catalyst in the aerobic oxidation of cyclohexene[J]. ChemCatChem, 2013,5:3657-3664. doi: 10.1002/cctc.201300529

    19. [19]

      Wang J.J., Yang M., Dong W.J.. Co(Ⅱ) complexes loaded into metal-organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins[J]. Catal. Sci. Technol., 2016,6:161-168. doi: 10.1039/C5CY01099C

    20. [20]

      Zhang J.M., Biradar A.V., Pramanik S.. A new layered metal-organic framework as a promising heterogeneous catalyst for olefin epoxidation reactions[J]. Chem. Commun., 2012,48:6541-6543. doi: 10.1039/c2cc18127d

    21. [21]

      Leus K., Liu Y.Y., Meledina M.. A Mo grafted metal organic framework:synthesis, characterization and catalytic investigations[J]. J. Catal., 2014,316:201-209. doi: 10.1016/j.jcat.2014.05.019

    22. [22]

      Leus K., Vanhaelewyn G., Bogaerts T.. Ti-functionalized NH2-MIL-47:an effective and stable epoxidation catalyst[J]. Catal. Today, 2013,208:97-105. doi: 10.1016/j.cattod.2012.09.037

    23. [23]

      Hu X.F., Lu Y.K., Dai F.N., Liu C.G., Liu Y.Q.. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via "bottle around ship":an effective catalyst for oxidative desulfurization[J]. Micropor. Mesopor. Mater., 2013,170:36-44. doi: 10.1016/j.micromeso.2012.11.021

    24. [24]

      Kozhevnikov I.V.. Heteropoly acids and related compounds as catalysts for fine chemical synthesis[J]. Catal. Rev. Sci. Eng., 1995,37:311-352. doi: 10.1080/01614949508007097

    25. [25]

      Sharpless K.B., Townsend J.M., Williams D.R.. Mechanism of epoxidation of olefins by covalent peroxides of molybdenum(Ⅵ)[J]. J. Am. Chem. Soc., 1972,94:295-296. doi: 10.1021/ja00756a062

    26. [26]

      Sheldon R.A., Van Doorn J.A.. Metal-catalyzed epoxidation of olefins with organic hydroperoxides:Ⅰ. A comparison of various metal catalysts[J]. J. Catal., 1973,31:427-437. doi: 10.1016/0021-9517(73)90314-X

    27. [27]

      Sobczak J., Ziółkowski J.J.. The catalytic epoxidation of olefins with organic hydroperoxides[J]. J. Mol. Catal., 1981,13:11-42. doi: 10.1016/0304-5102(81)85028-6

    28. [28]

      Miao Y.X., Lu G.Z., Liu X.H.. The molybdenum species of MoO3/SiO2 and their catalytic activities for the epoxidation of propylene with cumene hydroperoxide[J]. J. Ind. Eng. Chem., 2010,16:45-50. doi: 10.1016/j.jiec.2010.01.023

  • 加载中
    1. [1]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    11. [11]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    12. [12]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    13. [13]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    14. [14]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    15. [15]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    18. [18]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    19. [19]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(1)
  • Abstract views(696)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return