Citation: Cinnasamy Banupriya, Krishnan Srinivasan, Aruliah Rajasekar, Kadarkarai Murugan, Benelli Giovanni, Kannaiyan Dinakaran. Organic-inorganic hybrid fluorescent sensor thin films of rhodamine B embedded Ag-SBA15 for selective recognition of Hg (Ⅱ) ions in water[J]. Chinese Chemical Letters, ;2017, 28(7): 1399-1405. doi: 10.1016/j.cclet.2017.01.018 shu

Organic-inorganic hybrid fluorescent sensor thin films of rhodamine B embedded Ag-SBA15 for selective recognition of Hg (Ⅱ) ions in water

  • Corresponding author: Kannaiyan Dinakaran, kdinakaran.tvu@gmail.com
  • Received Date: 13 September 2016
    Revised Date: 2 November 2016
    Accepted Date: 25 November 2016
    Available Online: 20 July 2017

Figures(10)

  • Nowadays, the rapid and effective detection of low doses of heavy metal pollutants in contaminated water is a timely challenge in environmental pollution research. In this study, a rapid and highly sensitive assay for the detection of Hg2+ based on quenching of metal-enhanced fluorescence of rhodamine B (RB) has been fabricated. RB and silver nanoparticle were incorporated into the mesoporous siliceous framework spin cast on a quartz glass through post-synthetic incorporation method. The morphology and crystallinity of mesoporous structure and Ag nanoparticle were characterized by transmission electron microscopy and X-ray diffraction analyses. Photoluminescence assays on the hybrid thin film of RB-Ag-SBA15 showed a high enhancement when compared to the intensity of silver free SBA15-RB in the wavelength of 575 nm. The fluorescence of RB-Ag-SBA15 thin film decreased gradually with the increase in the concentration of Hg2+ and the detection limits were 10.54 nmol/L. Furthermore, the fluorescence intensity increased linearly with the concentration of Hg2+ in the range from 1.0×10-8 mol/L to 1.0×10-8 mol/L, with a response time of a few seconds. In addition, this system offers a high selectivity over interfering cations such as Cd2+ and Pb2+. Overall, we have developed an optical assay having a wellordered mesoporous SBA15 containing Ag-RBfor selective detection of Hg2+ in aqueous solution. The scheme combines the advantages of specific binding interactions between Hg2+ and RB molecule and optical emission properties of RB. The method is suitable for a single-shot and irreversible analytical assay in a quartz glass/microtiter plate.
  • 加载中
    1. [1]

      Campbell L., Dixon D.G., Hecky R.E.. A review of mercury in lake Victoria, East Africa: implications for human and ecosystem health[J]. J. Toxicol. Environ. Health B, 2003,6:325-356. doi: 10.1080/10937400306474

    2. [2]

      Selid P.D., Xu H.Y., Collins E.M., Collins M.S.F., Zhao J.X.. Sensing mercury for biomedical and environmental monitoring[J]. Sensors, 2009,9:5446-5459. doi: 10.3390/s90705446

    3. [3]

      Onyido I., Norris A.R., Buncel E.. Biomolecule-mercury interactions: modalities of DNA base-mercury binding mechanisms. Remediation strategies[J]. Chem. Rev., 2004,104:5911-5930. doi: 10.1021/cr030443w

    4. [4]

      Nolan E.M., Lippard S.J.. Tools and tactics for the optical detection of mercuric ion[J]. Chem. Rev., 2008,108:3443-3480. doi: 10.1021/cr068000q

    5. [5]

      Jarup L.. Hazards of heavy metal contamination[J]. Br. Med. Bull., 2003,68:167-182. doi: 10.1093/bmb/ldg032

    6. [6]

      Krishna M.V.B., Castro J., Brewer T.M., Marcus R.K.. Online mercury speciation through liquid chromatography with particle beam/electron ionization mass spectrometry detection[J]. J. Anal. Atom. Spectrum., 2007,22:283-291. doi: 10.1039/B609362K

    7. [7]

      Leermakers M., Baeyens W., Quevauviller P., Horvat M.. Mercury in environmental samples: speciation, artifacts and validation[J]. Trends Anal. Chem., 2005,24:383-393. doi: 10.1016/j.trac.2004.01.001

    8. [8]

      Gumpu M.B., Sethuraman S., Maheswari Krishnan U., Balaguru Rayappan J.B.. A review on detection of heavy metal ions in water-an electrochemical approach[J]. Sens. Actuators B, 2015,213:515-533. doi: 10.1016/j.snb.2015.02.122

    9. [9]

      Ratner N., Mandler D.. Electrochemical detection of low concentrations of mercury in water using gold nanoparticles[J]. Anal. Chem., 2015,87:5148-5155. doi: 10.1021/ac504584f

    10. [10]

      Gong J.M., Zhou T., Song D.D., Zhang L.Z., Hu X.L.. Stripping voltammetric detection of Mercury(Ⅱ) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode[J]. Anal. Chem., 2010,82:567-573. doi: 10.1021/ac901846a

    11. [11]

      Mor-Piperberg G., Tel-Vered R., Elbaz J., Willner I.. Nanoengineered electrically contacted enzymes on DNA scaffolds: functional assemblies for the selective analysis of Hg2+ ions[J]. J. Am. Chem. Soc., 2010,132:6878-6879. doi: 10.1021/ja1006355

    12. [12]

      Hsu I.H., Hsu T.C., Sun Y.C.. Gold-nanoparticle-based graphite furnace atomic absorption spectrometry amplification and magnetic separation method for sensitive detection of mercuric ions[J]. Biosens. Bioelectron., 2011,26:4605-4609. doi: 10.1016/j.bios.2011.04.048

    13. [13]

      Che Y.K., Yang X.M., Zang L.. Ultraselective fluorescent sensing of Hg2+ through metal coordination-induced molecular aggregation[J]. Chem. Commun., 2008:1413-1415.

    14. [14]

      Wang J., Liu B.. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I[J]. Chem. Commun., 2008:4759-4761.

    15. [15]

      Wang Z.D., Lee J.H., Lu Y.. Highly sensitive turn-on fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA[J]. Chem. Commun., 2008:6005-6007.

    16. [16]

      Zhang X.R., Li Y., Su H.R., Zhang S.S.. Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution[J]. Biosens. Bioelectron., 2010,25:1338-1343. doi: 10.1016/j.bios.2009.10.023

    17. [17]

      Zhu X., Chen L.F., Lin Z.Y., Qiu B., Chen G.N.. A highly sensitive and selective signal-on electrochemiluminescent biosensor for mercury[J]. Chem. Commun., 2010:3149-3151.

    18. [18]

      Liu J.W., Lu Y.. Rational design of turn-on allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity[J]. Angew. Chem. Int. Ed., 2007,46:7587-7590. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Wu D.H., Zhang Q., Chu X.. Ultrasensitive electrochemical sensor for mercury (Ⅱ) based on target-induced structure-switching DNA[J]. Biosens. Bioelectron., 2010,25:1025-1031. doi: 10.1016/j.bios.2009.09.017

    20. [20]

      Liu S.J., Nie H.G., Jiang J.H., Shen G.L., Yu R.Q.. Electrochemical sensor for mercury(Ⅱ) based on conformational switch mediated by interstrand cooperative coordination[J]. Anal. Chem., 2009,81:5724-5730. doi: 10.1021/ac900527f

    21. [21]

      Freeman R., Finder T., Willner I.. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations[J]. Angew. Chem. Int. Ed., 2009,48:7818-7821. doi: 10.1002/anie.v48:42

    22. [22]

      Lee S.J., Jung J.H., Seo J.. A chromogenic macrocycle exhibiting cationselective and anion-controlled color change: an approach to understanding structure-color relationships[J]. Org. Lett., 2006,8:1641-1643. doi: 10.1021/ol0602405

    23. [23]

      Métivier R., Leray I., Lebeau B., Valeur B.. A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(Ⅱ) in water[J]. J. Mater. Chem., 2005,15:2965-2973. doi: 10.1039/b501897h

    24. [24]

      Li D., Wieckowska A., Willner I.. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines[J]. Angew. Chem. Int. Ed., 2008,47:3927-3931. doi: 10.1002/anie.v47:21

    25. [25]

      Li T., Li B.Q., Wang E.K., Dong S.J.. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye[J]. Chem. Commun., 2009:3551-3553.

    26. [26]

      Xiang Y., Wang Z.D., Xing H., Wong N.Y., Lu Y.. Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach[J]. Anal. Chem., 2010,82:4122-4129. doi: 10.1021/ac100244h

    27. [27]

      Lee J.S., Han M.S., Mirkin C.A.. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles[J]. Angew. Chem. Int. Ed., 2007,46:4093-4096. doi: 10.1002/(ISSN)1521-3773

    28. [28]

      Du J.J., Wang Z.K., Fan J.L., Peng X.J.. Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry[J]. Sens. Actuators B, 2015,212:481-486. doi: 10.1016/j.snb.2015.01.110

    29. [29]

      Ye B.C., Yin B.C.. Highly sensitive detection of mercury(Ⅱ) ions by fluorescence polarization enhanced by gold nanoparticles[J]. Angew. Chem. Int. Ed., 2008,47:8386-8389. doi: 10.1002/anie.v47:44

    30. [30]

      Liu C.W., Hsieh T.H., Huang C.C., Lin Z.H., Chang H.T.. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J]. Chem. Commun., 2008:2242-2244.

    31. [31]

      He S.J., Li D., Zhu C.F.. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye[J]. Chem. Commun., 2008:4885-4887.

    32. [32]

      Chen G.H., Wei Y.C., Yen Y.C.. Detection of mercury(Ⅱ) ions using colorimetric gold nanoparticles on paper-based analytical devices[J]. Anal. Chem., 2014,86:6843-6849. doi: 10.1021/ac5008688

    33. [33]

      Xu X.W., Wang J., Jiao K., Yang X.R.. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range[J]. Biosens. Bioelectron., 2009,24:3153-3158. doi: 10.1016/j.bios.2009.03.025

    34. [34]

      Liu M., Wang Z.Y., Zong S.F.. SERS detection and removal of mercury(Ⅱ)/silver(Ⅰ) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles[J]. ACS Appl. Mater Interfaces, 2014,6:7371-7379. doi: 10.1021/am5006282

    35. [35]

      Sato Y., Tian J., Ichihashi T.. Enhancement in fluorescence response by a quencher for amiloride upon binding to thymine opposite an abasic site in a DNA duplex[J]. Anal. Chim. Acta, 2010,675:49-52. doi: 10.1016/j.aca.2010.06.042

    36. [36]

      Balamurugan A., Lee H.I.. Water-soluble polymeric probes for the selective sensing of mercury ion: pH-driven controllable detection sensitivity and time[J]. Macromolecules, 2015,48:1048-1054. doi: 10.1021/ma502350p

    37. [37]

      Liu Z.P., He W.J., Guo Z.J.. Metal coordination in photoluminescent sensing[J]. Chem. Soc. Rev., 2013,42:1568-1600. doi: 10.1039/c2cs35363f

    38. [38]

      Yang Y.M., Zhao Q., Feng W., Li F.Y.. Luminescent chemodosimeters for bioimaging[J]. Chem. Rev., 2012,113:192-270.

    39. [39]

      Santra M., Ryu D., Chatterjee A.. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species[J]. Chem. Commun., 2009:2115-2117.

    40. [40]

      Lee M.H., Lee S.J., Jung J.H., Lim H., Kim J.S.. Luminophore-immobilized mesoporous silica for selective Hg2+ sensing[J]. Tetrahedron, 2007,63:12087-12092. doi: 10.1016/j.tet.2007.08.113

    41. [41]

      Lu W.B., Qin X.Y., Liu S.. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (Ⅱ) ions[J]. Anal. Chem., 2012,84:5351-5357. doi: 10.1021/ac3007939

    42. [42]

      Bhatt K.D., Vyas D.J., Makwana B.A.. Turn-on fluorescence probe for selective detection of Hg(Ⅱ) by calixpyrrole hydrazide reduced silver nanoparticle: application to real water sample[J]. Chin. Chem. Lett., 2016,27:731-737. doi: 10.1016/j.cclet.2016.01.012

    43. [43]

      Xi L.L., Ma H.B., Tao G.H.. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection[J]. Chin. Chem. Lett., 2016,27:1531-1536. doi: 10.1016/j.cclet.2016.03.002

    44. [44]

      Saikia D., Dutta P., Sarma N.S., Adhikary N.C.. CdTe/ZnS core/shell quantum dotbased ultrasensitive PET sensor for selective detection of Hg(Ⅱ) in aqueous media[J]. Sens. Actuators B, 2016,230:149-156. doi: 10.1016/j.snb.2016.02.035

    45. [45]

      Zhou P., Meng Q.T., He G.J.. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+ in aqueous media[J]. J. Environ. Monit., 2009,11:648-653. doi: 10.1039/B815287J

    46. [46]

      Lakowicz J.R.. Plasmonics in biology and plasmon-controlled fluorescence[J]. Plasmonics, 2006,1:5-33. doi: 10.1007/s11468-005-9002-3

    47. [47]

      Lakowicz J.R., Fu Y.. Modification of single molecule fluorescence near metallic nanostructures[J]. Laser. Photon. Rev., 2009,3:221-232. doi: 10.1002/lpor.v3:1/2

    48. [48]

      Tovmachenko O.G., Graf C., van den Heuvel D.J., van Blaaderen A., Gerritsen H.C.. Fluorescence enhancement by metal-core/silica-shell nanoparticles[J]. Adv. Mater., 2006,18:91-95. doi: 10.1002/(ISSN)1521-4095

    49. [49]

      Yang J.P., Zhang F., Chen Y.R.. Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence[J]. Chem. Commun., 2011,47:11618-11620. doi: 10.1039/c1cc15304h

    50. [50]

      Zhang G.B.. Fabrication of Ag@SiO2@Y2 O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles[J]. J. Am. Chem. Soc., 2010,132:2850-2851. doi: 10.1021/ja909108x

    51. [51]

      Cho S.Y., Jeon H.J., Yoo H.W.. Highly enhanced fluorescence signals of quantum dot-polymer composite arrays formed by hybridization of ultrathin plasmonic Au nanowalls[J]. Nano Lett., 2015,15:7273-7280. doi: 10.1021/acs.nanolett.5b02355

    52. [52]

      Geddes C.D., Lakowicz J.R.. Editorial: metal-enhanced fluorescence[J]. J. Fluoresc., 2002,12:121-129. doi: 10.1023/A:1016875709579

    53. [53]

      Zhang J., Fu Y., Chowdhury M.H., Lakowicz J.R.. Metal-enhanced singlemolecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles[J]. Nano Lett., 2007,7:2101-2107. doi: 10.1021/nl071084d

    54. [54]

      Deng W., Jin D.Y., Drozdowicz-Tomsia K.. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background[J]. Adv. Mater., 2011,23:4649-4654. doi: 10.1002/adma.201102027

    55. [55]

      Ray K., Badugu R., Szmacinski H., Lakowicz J.R.. Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticledielectric-metal substrate[J]. Chem. Commun., 2015,51:15023-15026. doi: 10.1039/C5CC03581C

    56. [56]

      Aslan K., Wu M., Lakowicz J.R., Geddes C.D.. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. J. Am. Chem. Soc., 2007,129:1524-1525. doi: 10.1021/ja0680820

    57. [57]

      Dinakaran K., Chandramohan I., Venkatesan M.R.. Surface plasmon enhanced photoluminescence of Rhodamine B confined in SBA15[J]. Bull. Korean Chem. Soc., 2011,32:3861-3864. doi: 10.5012/bkcs.2011.32.11.3861

    58. [58]

      Dubois A., Canva M., Brun A., Chaput F., Boilot J.P.. Photostability of dye molecules trapped in solid matrices[J]. Appl. Opt., 1996,35:3193-3199. doi: 10.1364/AO.35.003193

    59. [59]

      Liu Y., Yang E.B., Han R.. A new rhodamine-based fluorescent chemosensor for mercury in aqueous media[J]. Chin. Chem. Lett., 2014,25:1065-1068. doi: 10.1016/j.cclet.2014.04.033

    60. [60]

      Ahamed Karns M.M., Goodson M.. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicol. Appl. Pharmacol., 2008,233:404-410. doi: 10.1016/j.taap.2008.09.015

    61. [61]

      Chowdhury M.H., Aslan K., Malyn S.N., Lakowicz J.R., Geddes C.D.. Metalenhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states[J]. Appl. Phys. Lett., 2006,88173104. doi: 10.1063/1.2195776

    62. [62]

      Pan S.L., Wang Z.J., Rothberg L.J.. Enhancement of adsorbed dye monolayer fluorescence by a silver nanoparticle overlayer[J]. J. Phys. Chem.., 2006,110:17383-17387. doi: 10.1021/jp063191m

    63. [63]

      Li J.T., Guo L.M., Shi J.L.. Stepwise in situ synthesis and characterization of metallophthalocyanines@mesoporous matrix SBA-15 composites[J]. Phys. Chem. Chem. Phys., 2010,12:5109-5114. doi: 10.1039/b925431e

    64. [64]

      Huang C.C., Chang H.T.. Selective gold-nanoparticle-based turn-on fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution[J]. Anal. Chem., 2006,78:8332-8338. doi: 10.1021/ac061487i

  • 加载中
    1. [1]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    2. [2]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    6. [6]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    7. [7]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    8. [8]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    9. [9]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    10. [10]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    15. [15]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    19. [19]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    20. [20]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

Metrics
  • PDF Downloads(1)
  • Abstract views(669)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return