Citation: P.Krinochkin Alexey, S. Kopchuk Dmitry, V. Chepchugov Nikolay, A. Kim Grigory, S. Kovalev Igor, Rahman Matiur, V. Zyryanov Grigory, Majee Adinath, L. Rusinov Vladimir, N. Chupakhin Oleg. An efficient synthetic approach towards new 5, 5'-diaryl-2, 2'-bipyridine-based fluorophores[J]. Chinese Chemical Letters, ;2017, 28(5): 1099-1103. doi: 10.1016/j.cclet.2016.12.043 shu

An efficient synthetic approach towards new 5, 5'-diaryl-2, 2'-bipyridine-based fluorophores

  • Corresponding author: S. Kopchuk Dmitry, dkopchuk@mail.ru
  • Received Date: 14 October 2016
    Revised Date: 28 November 2016
    Accepted Date: 6 December 2016
    Available Online: 8 May 2017

Figures(3)

  • An efficient approach has been developed for the synthesis of 5, 5'-diaryl-2, 2'-bipyridines via their 1, 2, 4-triazine analogues. The notable advantages of the present method are:The possibility of varying the aromatic substituents in the positions 5 and 5' of bipyridine core and the possibility for obtaining 2, 2'-bipyridines bearing a fused cyclopentene core to increase the solubility in organic solvents. These 5, 5'-diaryl-2, 2'-bipyridines exhibited an intense emission in a range of ca. 422-521 nm in acetonitrile solution; depending on the nature of the aromatic substituents and the presence of annulated cyclopentene fragments. Apart from that, the significant bathochromic shifts of the both absorption and emission maxima were observed in comparison with a number of previously described similar structures. In some cases the significant increasing of the fluorescence quantum yields took place.
  • 加载中
    1. [1]

      (a) A. von Zelewsky, Stereochemistry of Coordination Compounds, Wiley, Chichester, 1996.

    2. [2]

      V.N. Kozhevnikov, O.V. Shabunina, D.S. Kopchuk. Facile synthesis of 6-aryl-3-pyridyl-12, 4-triazines as a key step toward highly fluorescent 5-substituted bipyridines and their Zn(Ⅱ) and Ru(Ⅱ) complexes[J]. Tetrahedron, 2008,64:8963-8973. doi: 10.1016/j.tet.2008.06.040

    3. [3]

      (a) F. Xiong, S. Q. Wang, L. M. He, et al. , Different photophysical properties of aryl-bipyridine linked pyrene and anthracene, Chin. J. Chem. 23(2005) 811-815;
      (b) A. H. Younes, L. Zhang, R. J. Clark, L. Zhu, Fluorescence of 5-arylvinyl-5'-methyl-2, 2'-bipyridyl ligands and their zinc complexes, J. Org. Chem. 74(2009) 8761-8772.

    4. [4]

      D.S. Kopchuk, N.V. Chepchugov, G.A. Kim. Preparation of 56-diaryl-2, 2-bipyridines using a 1, 2, 4-triazine methodology[J]. Russ. Chem. Bull., 2015,64:897-900. doi: 10.1007/s11172-015-0951-1

    5. [5]

      A. Harriman. Photophysics of 22'-bipyridyl[J]. J. Photochem., 1978,8:205-209. doi: 10.1016/0047-2670(78)80020-3

    6. [6]

      M. Kimura, A. Oda, Bipiridine Derivative and organic electroluminescence element containing the sam, US 2010327265A1, (2010).

    7. [7]

      N. Yokoyama, S. Hayashi, S. Izumi, S. Kusano. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device[J]. EP, 20102241568A1.

    8. [8]

      F.R. Dai, W.J. Wu, Q.W. Wang, H. Tian, W.Y. Wong. Heteroleptic ruthenium complexes containing uncommon 55'-disubstituted-2, 2'-bipyridine chromophores for dye-sensitized solar cells[J]. Dalton Trans., 2011,40:2314-2323. doi: 10.1039/C0DT01043J

    9. [9]

      E.C. Constable, C.E. Housecroft, M. Neuburger, P.J. Rösel, S. Schaffner. Diversification of ligand families through ferroin-neocuproin metal-binding domain manipulation[J]. J. Chem. Soc. Dalton Trans., 2009,25:4918-4927.

    10. [10]

      (a) D. M. Opris, A. Ossenbach, D. Lentz, A. D. Schlüter, A set of homologous hetarylenediyne macrocycles by oxidative acetylene-acetylene coupling, Org. Lett. 10(2008) 2091-2093;
      (b) J. R. Nitschke, S. Zu1rcher, T. Don Tilley, New zirconocene-coupling route to large, functionalized macrocycles, J. Am. Chem. Soc 122(2000) 10345-10352;
      (c) J. Sakamoto, A. D. Schlüter, Shape-persistent macrocycles: A synthetic strategy that combines easy and site-specific decorations with improved cyclization efficiency, Eur. J. Org. Chem. 16(2007) 270'-2712.

    11. [11]

      J.I. Bruce, J.-C. Chambron, P. Kölle, J.P. Sauvage. Synthesis of a linear bisporphyrin with a Ru(phen)22+-complexed 2, 2'-bipyridine spacer[J]. J. Chem. Soc. Perkin Trans., 2002,10:1226-1231.

    12. [12]

      (a) H. J. Nie, J. Y. Shao, J. Wu, J. Yao, Y. W. Zhong, Synthesis and reductive electropolymerization of metal complexes with 5, 5'-divinyl-2, 2'-bipyridine, Organometallics 31(2012) 6952-6959;
      (b) B. N. Briggs, F. Durola, D. R. McMillin, J. P. Sauvage, Luminescence studies of copper(I)-containing[2] pseudorotaxanes, Can. J. Chem. 89(2011) 98-103.

    13. [13]

      (a) S. Ladouceur, D. Fortin, E. Zysman-Colman, Role of substitution on the photophysical properties of 5, 5'-diaryl-2, 2'-bipyridine (bpy*) in[Ir (ppy)2(bpy*)]PF6 complexes: A combined experimental and theoretical study, Inorg. Chem. 49(2010) 5625-5641;
      (b) O. Henze, U. Lehmann, A. D. Schlüter, Synthesis of 5, 5ü-disubstituted 2, 2ü-bipyridines for modular chemistry, Synthesis 4(1999) 683-687.

    14. [14]

      (a) A. Goswami, K. Ohtaki, K. Kase, T. Ito, S. Okamoto, Synthesis of substituted 2, 2'-bipyridines and 2, 2': 6', 2-terpyridines by cobalt-catalyzed cycloaddition reactions of nitriles and α, ω-diynes with exclusive regioselectivity, Adv. Synth. Catal. 350(2008) 143-152;
      (b) Y. Sugiyama, S. Okamoto, Regioselective syntheses of substituted pyridines and 2, 2'-bipyridines by cobalt-catalyzed[2+2+2] cycloaddition of α, ω-diynes with nitriles, Synthesis 14(2011) 2247-2254.

    15. [15]

      R.J. Donohoe, C.D. Tait, M.K. Dearmond, D.W. Wertz. A spectroscopic study of some substituted tris(diimine) complexes of ruthenium(Ⅱ) and their reduction products[J]. Spectrochim. Acta, 1986,42:233-240. doi: 10.1016/0584-8539(86)80185-4

    16. [16]

      M. Schmittel, H. Ammon. A short synthetic route to 47-dihalogenated 1, 1'-phenanthrolines with additional groups in 3, 8-position:soluble precursors for macrocyclic oligophenanthrolines[J]. Eur. J. Org. Chem., 1998,5:785-792.

    17. [17]

      (a) J. Voignier, J. Frey, T. Kraus, et al. , Transition-metal-complexed cyclic[3]-and[4] pseudorotaxanes containing rigid ring-and-filament conjugates: Synthesis and solution studies, Chem. Eur. J. 17(2011) 5404-5414;
      (b) B. Champin, V. Sartor, J. P. Sauvage, A phen-terpy conjugate whose chelate coordination axes are orthogonal to one another and its zinc complex, New J. Chem. 30(2006) 22-25.

    18. [18]

      Y.C. You, M.C. Tzeng, C.C. Lai, S.H. Chiu. Using oppositely charged ions to operate a three-station[J]. Org. Lett., 2012,14:1046-1049. doi: 10.1021/ol203401d

    19. [19]

      (a) A. M. Prokhorov, D. N. Kozhevnikov, Reactions of triazines and tetrazines with dienophiles, Chem. Heterocycl. Compd. 48(2012) 1153-1176;
      (b) G. R. Pabst, O. C. Pfüller, J. Sauer, The new and simple 'LEGO' System: Synthesis and reactions of ruthenium(Ⅱ) complexes, Tetrahedron 55(1999) 8045-8064;
      (c) A. Rykowski, D. Branowska, J. Kielak, A novel one-pot synthesis of annulated 2, 2'-bipyridine ligands by inverse electron demand Diels-Alder reaction of 5, 5'-bi-1, 2, 4-triazines, Tetrahedron Lett. 41(2000) 3657-3659;
      (d) I. S. Kovalev, D. S. Kopchuk, A. F. Khasanov, et al. , The synthesis of polyarenemodified 5-phenyl-2, 2'-bipyridines via the methodology and aza-Diels-Alder reaction, Mendeleev Commun. 24(2014) 117-118.

    20. [20]

      (a) A. P. Krinochkin, D. S. Kopchuk, D. N. Kozhevnikov, Luminescent neutral lanthanide complexes of 5-aryl-2, 2'-bipyridine-6-carboxylic acids, synthesis and properties, Polyhedron 102(2015) 556-561;
      (b) D. S. Kopchuk, A. P. Krinochkin, D. N. Kozhevnikov, P. A. Slepukhin, Novel neutral lanthanide complexes of 5-aryl-2, 2'-bipyridine-6'-carboxylic acids with improved photophysical properties, Polyhedron 118(2016) 3'-36.

    21. [21]

      (a) D. S. Kopchuk, N. V. Chepchugov, G. V. Zyryanov, et al. , An efficient synthetic approach to 4', 5, 5"-triaryl-2, 2': 6', 2"-terpyridines, Tetrahedron Lett. 57(2016) 296-299;
      (b) D. S. Kopchuk, N. V. Chepchugov, G. A. Kim, et al. , Synthesis of unsymmetric 6, 6-diaryl-2, 2-bipyridines using a 1, 2, 4-triazine methodology, Russ. Chem. Bull. 64(2015) 695-698;
      (c) D. S. Kopchuk, N. V. Chepchugov, O. S. Taniya, et al. , Effective synthetic approach to 4', 5-Diaryl-2, 2': 6', 2"-terpyridines, Russ. J. Org. Chem. 51(2015) 1162-1165.

    22. [22]

      (a) K. Miyata, D. Schepmann, B. Wünsch, Synthesis and ü receptor affinity of regioisomeric spirocyclic furopyridines, Eur. J. Med. Chem. 83(2014) 709-716;
      (b) J. Corte, J. Hangeland, M. Quan, J. M. Smallheer, T. Fang, Six-membered heterocycles useful as serine protease inhibitors, WO2005/123680 A1, (2005);
      (c) G. C. Condie, J. Bergman, Reactivity of β-carbolines and cyclopenta[b] indolones prepared from the intramolecular cyclization of 5(4H)-oxazolones derived from L-tryptophan, Eur. J. Org. Chem. 6(2004) 1286-1297.

    23. [23]

      V. Farina, G. Li, J. Liu, et al. , Process for making heteroaryl amine intermediate compounds, WO2007/044490 A2, (2007).

    24. [24]

      D.N. Kozhevnikov, N.N. Kataeva, V.L. Rusinov, O.N. Chupakhin. Chloromethyl-, dichloromethyl-, and trichloromethyl-1, 2, 4-triazines and their 4-oxides:Method for the synthesis and tele-substitution reactions with C-nucleophiles[J]. Russ. Chem. Bull., 2004,53:1295-1300. doi: 10.1023/B:RUCB.0000042289.07168.8f

    25. [25]

      T.V. Saraswathi, V.R. Srinivasan. Syntheses and spectral characteristics of 6-mono-, 3, 6-di-and 35, 6-trisubstituted-1, 2, 4-triazines[J]. Tetrahedron, 1977,33:1043-1051. doi: 10.1016/0040-4020(77)80223-8

    26. [26]

      V.N. Kozhevnikov, D.N. Kozhevnikov, O.V. Shabunina, V.L. Rusinov, O.N. Chupakhin. An efficient route to 5-(hetero)aryl-24'-and 2, 2'-bipyridines throughreadilyavailable3-pyridyl-1, 2, 4-triazines[J]. Tetrahedron Lett., 2005,46:1791-1793. doi: 10.1016/j.tetlet.2005.01.135

    27. [27]

      J.C. Loren, J.S. Siegel. Synthesis and fluorescence properties of manisylsubstituted terpyridine, bipyridine, and phenanthroline, Angew[J]. Chem. Int. Ed., 2001,40:754-757. doi: 10.1002/1521-3773(20010216)40:4<>1.0.CO;2-X

    28. [28]

      E.C. Constable, M. Neuburger, P. Rösel. Ligand-based charge-transfer luminescence in ionic cyclometalated iridium(Ⅲ) complexes bearing a pyrene-functionalized bipyridine ligand:A joint theoretical and experimental study[J]. Inorg. Chem., 2013,52:885-897. doi: 10.1021/ic302026f

    29. [29]

      W.H. Melhuish. Quantum efficiencies of fluorescence of organic substances:Effect of solvent and concentration of the fluorescent solute[J]. J. Phys. Chem., 1961,65:229-235. doi: 10.1021/j100820a009

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    9. [9]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    10. [10]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    13. [13]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    14. [14]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    15. [15]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    16. [16]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    17. [17]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(1)
  • Abstract views(748)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return