Fabrication of virus-like particles with strip-pattern surface: A two-step self-assembly approach
- Corresponding author: Cai Chun-Hua, caichunhua@ecust.edu.cn Lin Jia-Ping, jlin@ecust.edu.cn
Citation:
Zhang Shuo, Cai Chun-Hua, Guan Zhou, Lin Jia-Ping, Zhu Xing-Yu. Fabrication of virus-like particles with strip-pattern surface: A two-step self-assembly approach[J]. Chinese Chemical Letters,
;2017, 28(4): 839-844.
doi:
10.1016/j.cclet.2016.12.040
Mai Y.Y., Eisenberg A. Self-assembly of block copolymers[J]. Chem.Soc.Rev., 2012,41:5969-5985. doi: 10.1039/c2cs35115c
Discher D.E., Eisenberg A. Polymer vesicles[J]. Science, 2002,297:967-973. doi: 10.1126/science.1074972
Gröschel A.H., Walther A., Löbling T.I.. Guided hierarchical co-assembly of soft patchy nanoparticles[J]. Nature, 2013,503:247-251.
Chen L.L., Jiang T., Lin J.P., Cai C.H. Toroid formation through self-assembly of graft copolymer and homopolymer mixtures:experimental studies and dissipative particle dynamics simulations[J]. Langmuir, 2013,29:8417-8426. doi: 10.1021/la401553a
Zhao F.B., Liu Z.L., Sun J.P., Feng L., Hu J.W. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water[J]. Chin.Chem.Lett., 2009,20:231-234. doi: 10.1016/j.cclet.2008.10.044
Yan D.Y., Zhou Y.F., Hou J. Supramolecular self-assembly of macroscopic tubes[J]. Science, 2004,303:65-67. doi: 10.1126/science.1090763
Cai C.H., Wang L.Q., Lin J.P. Self-assembly of polypeptide-based copolymers into diverse aggregates[J]. Chem.Commun., 2011,47:11189-11203. doi: 10.1039/c1cc12683k
Moughton A.O., Hillmyer M.A., Lodge T.P. Multicompartment block polymer micelles[J]. Macromolecules, 2012,45:2-19. doi: 10.1021/ma201865s
Marguet M., Bonduelle C., Lecommandoux S. Multicompartmentalized polymeric systems:towards biomimetic cellular structure and function[J]. Chem.Soc.Rev., 2013,42:512-529. doi: 10.1039/C2CS35312A
Zhu W.J., Lin J.P., Cai C.H. The effect of a thermo-responsive polypeptide-based copolymer on the mineralization of calcium carbonate[J]. J.Mater.Chem., 2012,22:3939-3947. doi: 10.1039/c2jm15007g
Zhang Y., Gao W.L., Liu Z.Y.. Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique[J]. Chin.Chem.Lett., 2016,27:1091-1096. doi: 10.1016/j.cclet.2016.03.035
Dag A., Zhao J.C., Stenzel M.H. Origami with ABC triblock terpolymers based on glycopolymers:creation of virus-like morphologies[J]. ACS Macro Lett., 2015,4:579-583. doi: 10.1021/acsmacrolett.5b00163
Boato F., Thomas R.M., Ghasparian A.. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system[J]. Angew.Chem.Int.Ed., 2007,46:9015-9018. doi: 10.1002/(ISSN)1521-3773
Klug A. The tobacco mosaic virus particle:structure and assembly:Philos[J]. Trans.R.Soc.Lond.B Biol.Sci., 1999,354:531-535. doi: 10.1098/rstb.1999.0404
Garcea R.L., Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules[J]. Curr.Opin.Biotechnol., 2004,15:513-517. doi: 10.1016/j.copbio.2004.10.002
Xiong X.B., Uludağ H., Lavasanifar A. Virus-mimetic polymeric micelles for targeted siRNA delivery[J]. Biomaterials, 2010,31:5886-5893. doi: 10.1016/j.biomaterials.2010.03.075
Upadhyay K.K., J.F.Le Meins, Misra A.. Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(γ-benzyl glutamate)copolymers[J]. Biomacromolecules, 2009,10:2802-2808. doi: 10.1021/bm9006419
Tamerler C., Sarikaya M. Genetically designed peptide-based molecular materials[J]. ACS Nano, 2009,3:1606-1615. doi: 10.1021/nn900720g
Huang J., Bonduelle C., Thévenot J., Lecommandoux S., Heise A.. Biologically active polymersomes from amphiphilic glycopeptides[J]. J.Am.Chem.Soc., 2012,134:119-122. doi: 10.1021/ja209676p
Li Y.L., Jiang T., Lin S.L.. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers[J]. Sci.Rep., 2015,510137. doi: 10.1038/srep10137
Cai C.H., Lin J.P., Zhu X.Y.. Superhelices with designed helical structures and temperature-stimulated chirality transitions[J]. Macromolecules, 2016,49:15-22. doi: 10.1021/acs.macromol.5b02254
Cai C.H., Li Y.L., Lin J.P.. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies[J]. Angew.Chem.Int.Ed., 2013,52:7732-7736. doi: 10.1002/anie.v52.30
Zhu X.Y., Guan Z., Lin J.P., Cai C.H.. Strip-pattern-spheres self-assembled from polypeptide-based polymer mixtures:structure and defect features[J]. Sci.Rep., 2016,629796. doi: 10.1038/srep29796
Tian B., Tao X.G., Ren T.Y.. Polypeptide-based vesicles:formation, properties and application for drug delivery[J]. J.Mater.Chem., 2012,22:17404-17414. doi: 10.1039/c2jm31806g
Zhao L.X., Li N.N., Wang K.M.. A review of polypeptide-based polymersomes[J]. Biomaterials, 2014,35:1284-1301. doi: 10.1016/j.biomaterials.2013.10.063
Chen L.L., Chen T., Fang W.X.. Synthesis and pH-responsive schizophrenic aggregation of a linear-dendron-like polyampholyte based on oppositely charged polypeptides[J]. Biomacromolecules, 2013,14:4320-4330. doi: 10.1021/bm401215w
Lin J.P., Zhu J.Q., Chen T.. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer[J]. Biomaterials, 2009,30:108-117. doi: 10.1016/j.biomaterials.2008.09.010
Zhang Z., Lv Q., Gao X.Y.. pH-Responsive poly(ethylene glycol)/poly(L-lactide)supramolecular micelles based on host-guest interaction[J]. ACS Appl. Mater.Interfaces, 2015,7:8404-8411. doi: 10.1021/acsami.5b01213
Guan X.W., Li Y.H., Jiao Z.X.. Codelivery of antitumor drug and gene by a pH-sensitive charge-conversion system[J]. ACS Appl.Mater.Interfaces, 2015,7:3207-3215. doi: 10.1021/am5078123
Agut W., BrÛlet A., Schatz C., Taton D., Lecommandoux S. pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate] -b-poly(glutamic acid)double hydrophilic block copolymers[J]. Langmuir, 2010,26:10546-10554. doi: 10.1021/la1005693
Carlsen A., Lecommandoux S. Self-assembly of polypeptide-based block copolymer amphiphiles[J]. Curr.Opin.Colloid Interface Sci., 2009,14:329-339. doi: 10.1016/j.cocis.2009.04.007
Talingting M.R., Munk P., Webber S.E., Tuzar Z. Onion-type micelles from polystyrene-block-poly(2-vinylpyridine)and poly(2-vinylpyridine)-block-poly (ethylene oxide)[J]. Macromolecules, 1999,32:1593-1601. doi: 10.1021/ma981269u
Zhang W.Q., Shi L.Q., Miao Z.J., Wu K., An Y.L. Core-shell-corona micellar complexes between poly(ethylene glycol)-block-poly(4-vinyl pyridine)and polystyrene-block-poly(acrylic acid)[J]. Macromol.Chem.Phys, 2005,206:2354-2361. doi: 10.1002/(ISSN)1521-3935
Zhang Z.K., Ma R.J., Shi L.Q. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions[J]. Acc.Chem.Res., 2014,47:1426-1437. doi: 10.1021/ar5000264
Jiang X.W., Wang Y., Zhang W.Q., Zheng P.W., Shi L.Q. Raspberry-like aggregates containing secondary nanospheres of polystyrene-block-poly(4-vinylpyridine)micelles[J]. Macromol.Rapid.Commun., 2006,27:1833-1837. doi: 10.1002/(ISSN)1521-3927
Lutz J.F., Geffroy S., H.von Berlepsch. Investigation of a dual set of driving forces(hydrophobic+electrostatic)for the two-step fabrication of defined block copolymer micelles[J]. Soft Matter, 2007,3:694-698. doi: 10.1039/B700106A
He D.G., He X.X., Wang K.M., Zhao Y.X. A facile route for shape-selective synthesis of silica nanostructures using poly-L-lysine as template[J]. Chin.Chem. Lett., 2013,24:99-102. doi: 10.1016/j.cclet.2013.01.038
Wickremasinghe N.C., Kumar V.A., Hartgerink J.D. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release[J]. Biomacromolecules, 2014,15:3587-3595. doi: 10.1021/bm500856c
Matyjaszewski K., Xia J.H. Atom transfer radical polymerization[J]. Chem.Rev., 2001,101:2921-2990. doi: 10.1021/cr940534g
Davis K.A., Matyjaszewski K.. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers[J]. Macromolecules, 2000,33:4039-4047. doi: 10.1021/ma991826s
Zhuang Z.L., Zhu X.M., Cai C.H., Lin J.P., Wang L.Q. Self-assembly of a mixture system containing polypeptide graft and block copolymers:experimental studies and self-consistent field theory simulations[J]. J.Phys.Chem.B, 2012,116:10125-10134. doi: 10.1021/jp305956v
Yu Y.S., Zhang L.F., Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers[J]. Macromolecules, 1998,31:1144-1154. doi: 10.1021/ma971254g
Wang Y.Y., Lin S.L., Zang M.H.. Self-assembly and photo-responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties[J]. Soft Matter, 2012,8:3131-3138. doi: 10.1039/c2sm07100b
Zhuang Z.L., Cai C.H., Jiang T., Lin J.P., Yang C.Y. Self-assembly behavior of rod-coil-rod polypeptide block copolymers[J]. Polymer, 2014,55:602-610. doi: 10.1016/j.polymer.2013.12.016
Zhang L.F., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polym.Adv. Technol., 1998,9:677-699. doi: 10.1002/(ISSN)1099-1581
Harrison C., Adamson D.H., Cheng Z.D.. Mechanisms of ordering in striped patterns[J]. Science, 2000,290:1558-1560. doi: 10.1126/science.290.5496.1558
Pinna M., Guo X.H., Zvelindovsky A.V.. Block copolymer nanoshells[J]. Polymer, 2008,49:2797-2800. doi: 10.1016/j.polymer.2008.04.038
Horvat A., Sevink G.J.A., Zvelindovsky A.V., Krekhov A., Tsarkova L. Specific features of defect structure and dynamics in the cylinder phase of block copolymers[J]. ACS Nano, 2008,2:1143-1152. doi: 10.1021/nn800181m
Zhang L.S., Wang L.Q., Lin J.P.. Defect structures and ordering behaviours of diblock copolymers self-assembling on spherical substrates[J]. Soft Matter, 2014,10:6713-6721. doi: 10.1039/C4SM01180E
Hopf H.. Vektorfelder inn-dimensionalen Mannigfaltigkeiten[J]. Math.Ann, 1927,96:225-249. doi: 10.1007/BF01209164
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
Liqing Chen , Zheming Zhang , Yanhong Liu , Chenfei Liu , Congcong Xiao , Liming Gong , Mingji Jin , Zhonggao Gao , Wei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344