Citation: Cui Hao-Dong, Hu De-Hong, Zhang Jing-Nan, Gao Guan-Hui, Zheng Cui-Fang, Gong Ping, Xi Xing-Hua, Sheng Zong-Hai, Cai Lin-Tao. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy[J]. Chinese Chemical Letters, ;2017, 28(7): 1391-1398. doi: 10.1016/j.cclet.2016.12.038 shu

Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy

  • Corresponding author: Sheng Zong-Hai, zh.sheng@siat.ac.cn Cai Lin-Tao, lt.cai@siat.ac.cn
  • *Corresponding authors at: Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences, Shenzhen 518055, China
  • Received Date: 23 August 2016
    Revised Date: 17 November 2016
    Accepted Date: 1 December 2016
    Available Online: 8 July 2017

Figures(5)

  • As one of near-infrared (NIR) fluorescent (FL) nanoprobes, gold nanoclusters (Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size ( < 1.5 nm). Herein, the well-defined gold clusters nanoassembly (Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species (ROS) for photodynamic therapy (PDT). In vitro and in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species. Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.
  • 加载中
    1. [1]

      Mathew A., Pradeep T.. Noble metal clusters: applications in energy, environment, and biology[J]. Part. Part. Syst. Charact., 2014,31:1017-1053. doi: 10.1002/ppsc.v31.10

    2. [2]

      Zhang L.B., Wang E.K.. Metal nanoclusters: new fluorescent probes for sensors and bioimaging[J]. Nano Today, 2014,9:132-157. doi: 10.1016/j.nantod.2014.02.010

    3. [3]

      Guo S.J., Wang E.K.. Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors[J]. Nnao Today, 2011,6:240-264. doi: 10.1016/j.nantod.2011.04.007

    4. [4]

      Chen W.Y., Lin J.Y., Chen W.J.. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria[J]. Nanomedicine, 2010,5:755-764. doi: 10.2217/nnm.10.43

    5. [5]

      Chan P.H., Chen Y.C.. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillinresistant Staphylococcus aureus[J]. Anal. Chem., 2012,84:8952-8956. doi: 10.1021/ac302417k

    6. [6]

      Chan P.H., Wong S.Y., Lin S.H., Chen Y.C.. Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria[J]. Rapid Commun. Mass Spectrom., 2013,27:2143-2148. doi: 10.1002/rcm.v27.19

    7. [7]

      Chen T.H., Tseng W.L.. (Lysozyme type Ⅵ)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood[J]. Small, 2012,8:1912-1919. doi: 10.1002/smll.201102741

    8. [8]

      Durgadas C.V., Sharma C.P., Sreenivasan K.. Fluorescent gold clusters as nanosensors for copper ions in live cells[J]. Analyst, 2011,136:933-940. doi: 10.1039/C0AN00424C

    9. [9]

      Hu L.Z., Han S., Parveen S.. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters[J]. Biosens. Bioelectron., 2012,32:297-299. doi: 10.1016/j.bios.2011.12.007

    10. [10]

      Shang L., Yang L.X., Stockmar F.. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging[J]. Nanoscale, 2012,4:4155-4160. doi: 10.1039/c2nr30219e

    11. [11]

      Li H.C., Guo Y.X., Xiao L.H., Chen B.. Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe[J]. Analyst, 2014,139:285-289. doi: 10.1039/C3AN01736B

    12. [12]

      Wu X., He X.X., Wang K.M.. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo[J]. Nanoscale, 2010,2:2244-2249. doi: 10.1039/c0nr00359j

    13. [13]

      Liang G.H., Ye D.X., Zhang X.X.. One-pot synthesis of Gd3+-functionalized gold nanoclusters for dual model (fluorescence/magnetic resonance) imaging[J]. J. Mater. Chem. B, 2013,1:3545-3552. doi: 10.1039/c3tb20440e

    14. [14]

      Qiao J., Mu X.Y., Qi L., Deng J.Q., Mao L.Q.. Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging[J]. Chem. Commun., 2013,49:8030-8032. doi: 10.1039/c3cc44256j

    15. [15]

      Polavarapu L., Manna M., Xu Q.H.. Biocompatible glutathione capped gold clusters as one-and two-photon excitation fluorescence contrast agents for live cells imaging[J]. Nanoscale, 2011,3:429-434. doi: 10.1039/C0NR00458H

    16. [16]

      Li L.L., Liu X., Fu C.H., Tan L.F., Liu H.Y.. Biosynthesis of fluorescent gold nanoclusters for in vitro and in vivo tumor imaging[J]. Opt. Commun., 2015,355:567-574. doi: 10.1016/j.optcom.2015.07.023

    17. [17]

      Chen H.Y., Zhang M., Yang H.B.. Dual fluorescence nano-conjugates based on gold nanoclusters for tumor-targeting imaging[J]. RSC Adv., 2014,4:8191-8199. doi: 10.1039/C3RA47453D

    18. [18]

      Chen H.Y., Li S.L., Li B.W.. Folate-modified gold nanoclusters as nearinfrared fluorescent probes for tumor imaging and therapy[J]. Nanoscale, 2012,4:6050-6064. doi: 10.1039/c2nr31616a

    19. [19]

      Vankayala R., Kuo C.L., Nuthalapati K., Chiang C.S., Hwang K.C.. Nucleustargeting gold nanoclusters for simultaneous in vivo fluorescence imaging gene delivery, and NIR-light activated photodynamic therapy[J]. Adv. Funct. Mater., 2015,25:5934-5945. doi: 10.1002/adfm.201502650

    20. [20]

      Zhang X.D., Chen J., Luo Z.T.. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J]. Adv. Healthc. Mater., 2014,3:133-141. doi: 10.1002/adhm.v3.1

    21. [21]

      Liu R., Wang Y.L., Yuan Q.. The Au clusters induce tumor cell apoptosis via specifically targeting thioredoxin reductase 1(TrxR1) and suppressing its activity[J]. Chem. Commun., 2014,50:10687-10690. doi: 10.1039/C4CC03320E

    22. [22]

      Chiu W.J., Chen W.Y., Lai H.Z.. Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application[J]. J. Nanopart. Res., 2014,162478. doi: 10.1007/s11051-014-2478-z

    23. [23]

      Kennedy T.A.C., MacLean J.L., Liu J.W.. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH[J]. Chem. Commun., 2012,48:6845-6847. doi: 10.1039/c2cc32841k

    24. [24]

      Liu G.Y., Shao Y., Ma K.. Synthesis of DNA-templated fluorescent gold nanoclusters[J]. Gold Bull., 2012,45:69-74. doi: 10.1007/s13404-012-0049-6

    25. [25]

      Jiang H., Zhang Y.Y., Wang X.M.. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters[J]. Nanoscale, 2014,6:10355-10362. doi: 10.1039/C4NR02180K

    26. [26]

      Xie J.P., Zheng Y.G., Ying J.Y.. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. J. Am. Chem. Soc., 2009,131:888-889. doi: 10.1021/ja806804u

    27. [27]

      Kawasaki H., Hamaguchi K., Osaka I., Arakawa R.. pH-Dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission[J]. Adv. Funct. Mater., 2011,21:3508-3515. doi: 10.1002/adfm.201100886

    28. [28]

      Le Guével X., Daum N., Schneider M.. Synthesis and characterization of human transferrin-stabilized gold nanoclusters[J]. Nanotechnology, 2011,22275103. doi: 10.1088/0957-4484/22/27/275103

    29. [29]

      Kawasaki H., Yoshimura K., Hamaguchi K., Arakawa R.. Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection[J]. Anal. Sci., 2011,27:591-596. doi: 10.2116/analsci.27.591

    30. [30]

      Retnakumari A., Jayasimhan J., Chandran P.. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia[J]. Nanotechnology, 2011,22285102. doi: 10.1088/0957-4484/22/28/285102

    31. [31]

      Liu C.L., Wu H.T., Hsiao Y.H.. Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging[J]. Angew. Chem., 2011,50:7056-7060. doi: 10.1002/anie.v50.31

    32. [32]

      Kong Y.F., Chen J., Gao F.. Near-infrared fluorescent ribonuclease-Aencapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging[J]. Nanoscale, 2013,5:1009-1017. doi: 10.1039/C2NR32760K

    33. [33]

      Chen Y., Wang Y., Wang C.X.. Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+[J]. J. Colloid Interface Sci., 2013,396:63-68. doi: 10.1016/j.jcis.2013.01.031

    34. [34]

      Liu P.C., Shang L., Li H.W.. Synthesis of fluorescent a-chymotrypsin Afunctionalized gold nanoclusters and their application to blot-based technology for Hg2+ detection[J]. RSC Adv., 2014,4:31536-31543. doi: 10.1039/C4RA05686H

    35. [35]

      Chattoraj S., Bhattacharyya K.. Fluorescent gold nanocluster inside a live breast cell: etching and higher uptake in cancer cell[J]. J. Phys. Chem. C, 2014,118:22339-22346. doi: 10.1021/jp506745p

    36. [36]

      Shao C.Y., Yuan B., Wang H.Q.. Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters[J]. J. Mater. Chem., 2011,21:2863-2866. doi: 10.1039/c0jm04071a

    37. [37]

      Wang J.L., Zhang G., Li Q.W.. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters[J]. Sci. Rep., 2013,31157. doi: 10.1038/srep01157

    38. [38]

      Qian H.F., Zhu M.Z., Wu Z.K., Jin R.C.. Quantum sized gold nanoclusters with atomic precision[J]. Acc. Chem. Res., 2012,45:1470-1479. doi: 10.1021/ar200331z

    39. [39]

      Hu D.H., Sheng Z.H., Zhang P.F.. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo[J]. Nanoscale, 2013,5:1624-1628. doi: 10.1039/c2nr33543c

    40. [40]

      Wang Y.L., Xu C., Zhai J.. Label-free Au cluster used for in vivo 2D and 3D computed tomography of murine kidneys[J]. Anal. Chem., 2015,87:343-345. doi: 10.1021/ac503887c

    41. [41]

      Zhang A.L., Tu Y., Qin S.B.. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging[J]. J. Colloid Interface Sci., 2012,372:239-244. doi: 10.1016/j.jcis.2012.01.005

    42. [42]

      Chen H.Y., Li B.W., Ren X.Y.. Multifunctional near-infrared-emitting nanoconjugates based on gold clusters for tumor imaging and therapy[J]. Biomaterials, 2012,33:8461-8476. doi: 10.1016/j.biomaterials.2012.08.034

    43. [43]

      Zhang X.D., Luo Z.T., Chen J.. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specifi city and cancer radiotherapy[J]. Adv. Mater., 2014,12:4565-4568.

    44. [44]

      Rui L., Cao H., Xue Y., Liu L., Xu L., Gao Y., Zhang W.. Functional organic nanoparticles for photodynamic therapy[J]. Chin. Chem. Lett., 2016,27:1412-1420. doi: 10.1016/j.cclet.2016.07.011

    45. [45]

      Gu W., Zhang Q., Zhang T., Li Y., Xiang J., Peng R., Liu J.. Hybrid polymeric nanocapsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy[J]. J. Mater. Chem. B, 2016,4:910-919. doi: 10.1039/C5TB01619C

    46. [46]

      Khlebtsov B.N., Tuchina E.S., Tuchin V.V., Khlebtsov N.. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus[J]. RSC Adv., 2015,5:61639-61649. doi: 10.1039/C5RA11713E

    47. [47]

      Quantum P.G.. Fluorescence imaging assisted photodynamic therapy using [hotosensitizer-linked gold quantum clusters[J]. ACS Nano, 2015,9:5825-5832. doi: 10.1021/acsnano.5b00406

    48. [48]

      Zhang C., Zhou Z., Zhi X., Ma Y., Wang K., Wang Y., Zhang Y., Fu H.. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTP1[J]. Theranostics, 2015,5:134-149. doi: 10.7150/thno.10363

    49. [49]

      Kawasaki H., Kumar S., Li G., Zeng C., Kauffman D.R., Yoshimoto J., Iwasaki Y., Jin R.. Generation of singlet oxygen by photoexcited Au25(SR) 18 clusters[J]. Chem. Mater., 2014,26:2777-2788. doi: 10.1021/cm500260z

    50. [50]

      Sakamoto M., Tachikawa T., Fujitsuka M., Majima T.. Photochemical reactivity of gold clusters: dependence on size and spin[J]. Langmuir, 2009,25:13888-13893. doi: 10.1021/la901552f

    51. [51]

      Wang L., Li L., Ma H.L., Wang H.. Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery[J]. Chin. Chem. Lett., 2013,24:351-358. doi: 10.1016/j.cclet.2013.03.018

    52. [52]

      Rawlings D.E., Dew D., Du Plessis C.. Biomineralization of metal-containing ores and concentrates[J]. Trends Biotechnol., 2003,21:38-44. doi: 10.1016/S0167-7799(02)00004-5

    53. [53]

      Kragh-Hansen U.. Molecular aspects of ligand binding to serum albumin[J]. Pharmacology, 1981,33:17-53.

    54. [54]

      Wang S., Liu P., Qin Y., Chen Z., Shen J.. Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing[J]. Sens. Actuators B Chem., 2016,223:178-185. doi: 10.1016/j.snb.2015.09.058

    55. [55]

      Nair L.V., Philips D.S., Jayasree R.S., Ajayaghosh A.. A near-infrared fluorescent nanosensor (AuC@Urease) for the selective detection of blood urea[J]. Small, 2013,9:2673-2677. doi: 10.1002/smll.v9.16

    56. [56]

      Wang W., Huang Y., Zhao S., Shao T., Cheng Y.. Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds[J]. Chem. Commun., 2013,49:2234-2236. doi: 10.1039/c3cc38397k

    57. [57]

      Sheng Z., Hu D., Zheng M., Zhao P., Liu H., Gao D., Gong P.. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy[J]. ACS Nano, 2014,8:12310-12322. doi: 10.1021/nn5062386

    58. [58]

      Hui M., Xu X., Li N., An K.. Self-assembly of lysozyme on the surfaces of gold nanoparticles[J]. Chin. Chem. Lett., 2011,22:973-976. doi: 10.1016/j.cclet.2011.01.022

    59. [59]

      Nair L.V., Nair R.V., Jayasree R.S.. An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster[J]. Dalton Trans., 2016,45:11286-11291. doi: 10.1039/C6DT01753C

  • 加载中
    1. [1]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    2. [2]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    3. [3]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    4. [4]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    9. [9]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    10. [10]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    11. [11]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    12. [12]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    13. [13]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    14. [14]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    15. [15]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    16. [16]

      Yuequan WangCongtian WuChengcheng FengQin ChenZhonggui HeShenwu ZhangCong LuoJin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902

    17. [17]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    18. [18]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    19. [19]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    20. [20]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

Metrics
  • PDF Downloads(4)
  • Abstract views(720)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return