Citation: Meng Fan-Qiang, Feng Xiu-Juan, Wang Wan-Hui, Bao Ming. Synthesis of 5-vinyl-2-norbornene through Diels-Alder reaction of cyclopentadiene with 1, 3-butadiene in supercritical carbon dioxide[J]. Chinese Chemical Letters, ;2017, 28(4): 900-904. doi: 10.1016/j.cclet.2016.12.018 shu

Synthesis of 5-vinyl-2-norbornene through Diels-Alder reaction of cyclopentadiene with 1, 3-butadiene in supercritical carbon dioxide

  • Corresponding author: Feng Xiu-Juan, fengxiujuan@dlut.edu.cn Bao Ming, mingbao@dlut.edu.cn
  • *Corresponding authors at: State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
  • Received Date: 24 October 2016
    Revised Date: 28 November 2016
    Accepted Date: 28 November 2016
    Available Online: 16 April 2016

Figures(3)

  • An efficient method for the synthesis of 5-vinyl-2-norbornene from cyclopentadiene and 1, 3-butadiene was developed.The Diels-Alder reaction of cyclopentadiene with 1, 3-butadiene proceeded smoothly in supercritical carbon dioxide in the absence of any polymerization inhibitor to produce the corresponding 5-vinyl-2-norbornene in satisfactory yield with high selectivity.
  • 加载中
    1. [1]

      Osokin Yu.G.. Vinylnorbornene: preparation, chemical transformations, and use in organic synthesis and polymer chemistry. Vinylnorbornene synthesis and isomerization to ethylidenenorbornene (Review)[J]. Pet. Chem. 47, 2007,47:1-11. doi: 10.1134/S096554410701001X

    2. [2]

      (a) P. S. Ravishankar, Treatise on EPDM, Rubber Chem. Technol. 85 (2012) 327– 349;
      (b) E. K. Easterbrook, R. Allen, Ethylene-propylene Rubber, 1999, pp. 260–283.

    3. [3]

      (a) K. Cao, X. Liu, Y. Zhang, et al. , Insights into the Diels-Alder reactions between cyclopentadiene and 1, 3-butadiene with high temperature and high pressure, Ind. Eng. Chem. Res. 54 (2015) 7565–7570;
      (b) Z. X. Jiang, S. Z. Guo, Z. B. Yang, H. X. Ma, Sequential experimentation of synthesis of vinyl norbornene, Chin. Petrochem. Technol. 32 (2003) 847–852;
      (c) Z. Zhu, Z. Li, C. Cui, the synthesis method of 5-vinyl-2-norbornene, CN Patent 1580015, 2004.
      (d) M. Ogawa, Process for producing vinylnorbornene and/or tetrahydroindene, U. S. Patent 4219688, 1980.
      (e) M. Matsuno, Method for the production of vinyl norbornene, U. S. Patent 4079091, 1978. –2, U. S. Patent 3728406, 1973.
      (f) C. H. M. A. Vrinssen Cramers, Process for the preparation of 5-vinylnorbornene-2, U. S Patent 3728406 1973.

    4. [4]

      (a) E. Reverchon, I. D. Marco, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids 38 (2006) 146–166;
      (b) P. Michel, Supercritical fluid applications: industrial developments and economic issues, Ind. Eng. Chem. Res. 39 (2000) 4531–4535;
      (c) A. Baiker, Supercritical fluids in heterogeneous catalysis, Chem. Rev. 99 (1999) 453–473;
      (d) P. G. Jessop, T. Ikariya, R. Noyori, Homogeneous catalysis in supercritical fluids, Chem. Rev. 99 (1999) 475–493.

    5. [5]

      (a) E. J. Beckman, Supercritical and near-critical CO2 in green chemical synthesis and processing, J. Supercrit. Fluids 28 (2004) 121–191;
      (b) J. Qian, M. T. Timko, A. J. Allen, et al. , Solvophobic acceleration of Diels–Alder reactions in supercritical carbon dioxide, J. Am. Chem. Soc. 126 (2004) 5465–5474;
      (c) S. Fukuzawa, K. Metoki, S. Esumi, Asymmetric Diels–Alder reactions in supercritical carbon dioxide catalyzed by rare earth complexes, Tetrahedron 59 (2003) 10445–10452;
      (d) E. M. Glebov, L. G. Krishtopa, V. Stepanov, L. N. Krasnoperov, Kinetics of a Diels– Alder reaction of maleic anhydride and isoprene in supercritical CO2, J. Phys. Chem. A 105 (2001) 9427–9435;
      (e) R. Lee Thompson, R. Gla1ser, D. Bush, C. L. Liotta, C. A. Eckert, Rate variations of a hetero-Diels-Alder reaction in supercritical fluid CO2, Ind. Eng. Chem. Res. 38 (1999) 4220–4225;
      (f) S. K. I. M. Roberts, Supercritical and sub-critical fluid solvent effects on a Diels– Alder reaction, Chem. Eng. Comm. 171 (1999) 117–134;
      (g) B. Lin, A. Akgerman, Isoprene/methyl acrylate Diels–Alder reaction in supercritical carbon dioxide, Ind. Eng. Chem. Res. 38 (1999) 4525–4530;
      (h) A. R. Renslo, R. D. Weinstein, J. W. Tester, R. L. Danheiser, Concerning the regiochemical course of the Diels-Alder reaction in supercritical carbon dioxide, J. Org. Chem. 62 (1997) 4530–4533;
      (i) R. D. Weinstein, A. R. Renslo, R. L. Danheiser, J. G. Harris, J. W. Tester, Kinetic correlation of Diels–Alder reactions in supercritical carbon dioxide, J. Phys. Chem. 100 (1996) 12337–12341;
      (j) Y. Ikushima, N. Saito, Supercritical carbon dioxide as reaction medium: examination of its solvent effects in the near-critical region, J. Phys. Chem. 96 (1992) 2293–2297;
      (k) S. Kim, K. P. Johnston, Adjustment of the selectivity of a Diels–Alder reaction network using supercritical fluids, Chem. Eng. Comm. 63 (1988) 49–59.

    6. [6]

      (a) J. Song, X. Feng, Y. Yamamoto, et al. , Selective synthesis of d-lactone via palladium nanoparticles-catalyzed telomerization of CO2 with 1, 3-butadiene, Tetrahedron Lett. 57 (2016) 3163–3166;
      (b) J. Sun, M. Bao, X. Feng, et al. , Carboxylative coupling reaction of fivemembered (chloromethyl) heteroarenes with allyltributylstannane catalyzed by palladium nanoparticles, Tetrahedron Lett. 56 (2015) 6747–6750;
      (c) X. Feng, A. Sun, S. Zhang, X. Yu, M. Bao, Palladium-catalyzed carboxylative coupling of benzyl chlorides with allyltributylstannane: remarkable effect of Palladium nanoparticles, Org. Lett. 15 (2013) 108–111;
      (d) Y. Dai, X. Feng, B. Wang, R. He, M. Bao, Preparation and application of airstable P, N-bidentate ligands for the selective synthesis of d-lactone via the palladium-catalyzed telomerization of 1, 3-butadiene with carbon dioxide, J. Organometals Chem. 696 (2012) 4309–4314;
      (e) X. Feng, M. Yan, X. Zhang, M. Bao, The SBA-15/SO3H nanoreactor as a highly efficient and reusable catalyst for diketene-based, four-component synthesis of polyhydroquinolines and dihydropyridines under neat conditions, Chin. Chem. Lett. 22 (2011) 643–646;
      (f) X. Feng, M. Yan, T. Zhang, Y. Liu, M. Bao, Preparation and application of SBA-15-supported palladium catalyst for Suzuki reaction in supercritical carbon dioxide, Green Chem. 12 (2010) 1758–1766.

    7. [7]

      The dicyclopentadiene (DCPD) will decompose to generate cyclopentadiene (CPD) at a temperature higher than its boiling point (170 ℃).

    8. [8]

      Korach M., Nielsen D.R., Rideout W.H.. Dihydroxycyclopentene[J]. Org. Synth, 1962,42:50-54. doi: 10.15227/orgsyn.042.0050

  • 加载中
    1. [1]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    6. [6]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    7. [7]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    8. [8]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    9. [9]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    10. [10]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    11. [11]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    14. [14]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    15. [15]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    16. [16]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    17. [17]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    18. [18]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    19. [19]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    20. [20]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

Metrics
  • PDF Downloads(5)
  • Abstract views(836)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return