Citation: Mermer Arif, Demirci Serpil, Ozdemir Serap Basoglu, Demirbas Ahmet, Ulker Serdar, Ayaz Faik Ahmet, Aksakal Fatma, Demirbas Neslihan. Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids[J]. Chinese Chemical Letters, ;2017, 28(5): 995-1005. doi: 10.1016/j.cclet.2016.12.012 shu

Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids

  • Corresponding author: Demirbas Neslihan, neslihan@ktu.edu.tr
  • Received Date: 1 February 2016
    Revised Date: 30 October 2016
    Accepted Date: 18 November 2016
    Available Online: 21 May 2016

Figures(5)

  • Azole derivatives (3, 6) obtained starting from 1-(2-methoxyphenyl)piperazine were converted to the corresponding Mannich bases containing β-lactame or flouroquinolone core via a one pot three component reaction. The synthesis of conazole analogues was carried out starting from triazoles by three steps. Reactions were carried out under conventional and microwave mediated conditions. All the newly synthesized compounds were screened for their antimicrobial, enzyme inhibition and antioxidant activity, and most of them displayed good-moderate activity. Binding affinities and non-covalent interactions between enzyme-ligand complexes were predicted with molecular docking method at molecular level. Docking results complemented well the experimental results on α-glucosidase and urease inhibitory effects of the compounds. Higher binding affinities and much more interaction networks were observed for active compounds in contrary to inactive ones. It was predicted with the docking studies that triazole and anisole moieties in the structure of the synthesized compounds contributed to the stabilization of corresponding enzymes through noncovalent interactions.
  • 加载中
    1. [1]

      Khardory N.. Antibiotics-past, present and future[J]. Med. Clin. North Am., 2006,90:1049-1076. doi: 10.1016/j.mcna.2006.06.007

    2. [2]

      Mentese M.Y., Bayrak H., Uygun Y.. Microwave assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities[J]. Eur. J. Med. Chem., 2013,67:230-242. doi: 10.1016/j.ejmech.2013.06.045

    3. [3]

      Solomon V.R., Hu C.K., Lee H.. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline:a hybrid pharmacophore approach[J]. Bioorg. Med. Chem., 2010,18:1563-1572. doi: 10.1016/j.bmc.2010.01.001

    4. [4]

      Rajanarendar E., Thirupathaiah K., Ramakrishna S., Nagaraju D.. A facile and convenient synthesis of novel imidazo[1,2-b] isoxazoles and their Mannich bases as potential biodynamic agents[J]. Chin. Chem. Lett., 2015,26:1511-1513. doi: 10.1016/j.cclet.2015.07.024

    5. [5]

      Hu C.K., Solomon V.R., Cano P., Lee H.. A 4-aminoquinoline derivative that markedly sensitizes tumor cell killing by Akt inhibitors with a minimum cytotoxicity to non-cancer cells[J]. Eur. J. Med. Chem., 2010,45:705-709. doi: 10.1016/j.ejmech.2009.11.017

    6. [6]

      Demirci S., Demirbas A., Ulker S., Alpay-Karaoglu S., Demirbas N.. Synthesis of some hetero functionalized penicillanic acid derivatives and investigation of their biological activities[J]. Arch. Pharm., 2014,347:200-220. doi: 10.1002/ardp.v347.3

    7. [7]

      Alizadeh A., Ghanbaripour R., Zhu L.G.. Piperidine-iodine a dual system catalyst for synthesis of coumarin bearing pyrrolo[1,2-a] quinoxaline derivatives via a one-pot three-component reaction[J]. Tetrahedron, 2014,70:2048-2053. doi: 10.1016/j.tet.2014.01.038

    8. [8]

      Emami S., Ghafouri E., Faramarzi M.A.. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives:synthesis, in vitro antibacterial activity and in silico study[J]. Eur. J. Med. Chem., 2013,68:185-191. doi: 10.1016/j.ejmech.2013.07.032

    9. [9]

      Wiles J.A., Bradbury B.J., Pucci M.J.. New quinolone antibiotics:a survey of the literature from 2005 to 2010[J]. Expert Opin. Ther. Pat., 2010,20:1295-1319. doi: 10.1517/13543776.2010.505922

    10. [10]

      Huang J., Wang M.H., Wang B.. Synthesis antimycobacterial and antibacterial activity of 1-(6-amino-3,5-difluoropyridin-2-yl)fluoroquinolone derivatives containing an oxime functional moiety[J]. Bioorg. Med. Chem. Lett., 2016,26:2262-2267. doi: 10.1016/j.bmcl.2016.03.050

    11. [11]

      Sivakumar K.K., Rajasekaran A., Senthilkumar P., Wattamwar P.P.. Conventional and microwave assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties[J]. Bioorg. Med. Chem. Lett., 2014,24:2940-2944. doi: 10.1016/j.bmcl.2014.04.067

    12. [12]

      Fiorot R.G., Filho J.F.A., Pereira T.M.C.. A simple and convenient method for synthesis of new amino naphthoquinones derived from lawsone by catalytic multicomponent Mannich reaction[J]. Tetrahedron Lett., 2014,55:4373-4377. doi: 10.1016/j.tetlet.2014.06.031

    13. [13]

      Mansoor S.S., Aswin K., Logaiya K., Sudhan S.P.N.. An efficient synthesis of β-amino ketone compounds through one-pot three-component Mannichtype reactions using bismuth nitrate as catalyst[J]. J. Saudi Chem. Soc., 2015,19:379-386. doi: 10.1016/j.jscs.2012.04.008

    14. [14]

      Nayak P.S., Narayana B., Sarojini B.K.. Design synthesis, molecular docking and biological evaluation of imides, pyridazines, and imidazoles derived from itaconic anhydride for potential antioxidant and antimicrobial activities[J]. J. Taibah Univ. Sci., 2016,10:823-838. doi: 10.1016/j.jtusci.2014.09.005

    15. [15]

      Rostom S.A.F., Bekhit A.A.. Microwave-assisted synthesis of certain pyrrolyl pyridines, some derived ring systems and their evaluation as anticancer and antioxidant agents[J]. Eur. J. Med. Chem., 2015,92:712-722. doi: 10.1016/j.ejmech.2015.01.023

    16. [16]

      Balabani A., Hadjipavlou-Litina D.J., Litinas K.E.. Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as free radical scavengers[J]. Eur. J. Med. Chem., 2011,46:5894-5901. doi: 10.1016/j.ejmech.2011.09.053

    17. [17]

      Bayrak H., Demirbas A., Demirbas N., Karaoglu S.A.. Synthesis of some new 12,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities[J]. Eur. J. Med. Chem., 2009,44:4362-4366. doi: 10.1016/j.ejmech.2009.05.022

    18. [18]

      Basoglu S., Demirbas A., Ulker S., Alpay-Karaoglu S., Demirbas N.. Design, synthesis and biological activities of some 7-aminocephalosporanic acid derivatives[J]. Eur. J. Med. Chem., 2013,69:622-631. doi: 10.1016/j.ejmech.2013.07.040

    19. [19]

      Yolal M., Basoglu S., Bektas H.. Synthesis of eperezolid-like molecules and evaluation of their antimicrobial activities[J]. Russ. J. Bioorg. Chem., 2012,38:539-549. doi: 10.1134/S106816201205010X

    20. [20]

      Demirbas N., Karaoglu S.A., Demirbas A., Çelik E.. Synthesis and antimicrobial activities of some new[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazoles and[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazines[J]. Arkivoc, 2005,1:75-91.

    21. [21]

      Aher N.G., Pore V.S., Mishra N.N.. Synthesis and antifungal activity of 12,3-triazole containing fluconazole analogues[J]. Bioorg. Med. Chem. Lett., 2009,19:759-763. doi: 10.1016/j.bmcl.2008.12.026

    22. [22]

      Che X.Y., Sheng C.Q., Wang W.Y.. New azoles with potent antifungal activity:design, synthesis and molecular docking[J]. Eur. J. Med. Chem., 2009,44:4218-4226. doi: 10.1016/j.ejmech.2009.05.018

    23. [23]

      National Committee for Clinical Laboratory Standard, NCCLS Document M7-A3, 13(25), P. A. Willanova, PA, USA, 1993.

    24. [24]

      Blois M.S.. Antioxidant determinations by the use of a stable free radical[J]. Nature, 1958,181:1199-1200. doi: 10.1038/1811199a0

    25. [25]

      Benzie I.F.F., Strain J.J.. Ferric reducing/antioxidant power assay:direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration[J]. Methods Enzymol., 1999,299:15-27. doi: 10.1016/S0076-6879(99)99005-5

    26. [26]

      Apak R., Güçlü K., Özyürek M., Karademir S.E.. Novel total antioxidant capacity ındex for dietary polyphenols and vitamins c and e, using their cupric ıon reducing capability in the presence of neocuproine:CUPRAC method[J]. J. Agric. Food Chem., 2004,52:7970-7981. doi: 10.1021/jf048741x

    27. [27]

      Choudhary M.I., Adhikari A., Rasheed S.. Cyclopeptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation[J]. Phytochem. Lett., 2011,4:404-406. doi: 10.1016/j.phytol.2011.08.006

    28. [28]

      Weatherburn M.W.. Phenol-hypochlorite reaction for determination of ammonia[J]. Anal. Chem., 1967,39:971-974. doi: 10.1021/ac60252a045

    29. [29]

      M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. , Gaussian 09, Revision A. 01, Gaussian, Inc, Wallingford, CT, USA, 2009.

    30. [30]

      Becke A.D.. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys., 1993,98:5648-5652. doi: 10.1063/1.464913

    31. [31]

      Lee C.T., Yang W.T., Parr R.G.. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37:785-789. doi: 10.1103/PhysRevB.37.785

    32. [32]

      Yamamoto K., Miyake H., Kusunoki M., Osaki S.. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose[J]. FEBS J., 2010,277:4205-4214. doi: 10.1111/j.1742-4658.2010.07810.x

    33. [33]

      Ha N.C., Oh S.T., Sung J.Y.. Supramolecular assembly and acid resistance of Helicobacter pylori urease[J]. Nat. Struct. Mol. Biol., 2001,8:505-509. doi: 10.1038/88563

    34. [34]

      Molecular Operating Environment (MOE), 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H 3A 2R7, 2015.

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    6. [6]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    7. [7]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    8. [8]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    9. [9]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    10. [10]

      Huijuan LiZhu WangJiagen GengRuiping SongXiaoyin LiuChaochen FuSi Li . Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater. Chinese Chemical Letters, 2025, 36(4): 110138-. doi: 10.1016/j.cclet.2024.110138

    11. [11]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    14. [14]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    15. [15]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    16. [16]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    17. [17]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    18. [18]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    19. [19]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(5)
  • Abstract views(811)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return