Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction
- Corresponding author: Ding Shu-Jiang, dingsj@xjtu.edu.cn
Citation:
Xu Jing-Jing, Xiao Chun-Hui, Ding Shu-Jiang. Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction[J]. Chinese Chemical Letters,
;2017, 28(4): 748-754.
doi:
10.1016/j.cclet.2016.12.006
Wen Z.H., Ci S.Q., Hou Y., Chen J.H.. Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst[J]. Angew.Chem.Int.Ed., 2014,53:6496-6500. doi: 10.1002/anie.201402574
Shao Y.Y., Park S., Xiao J.. Electrocatalysts for nonaqueous lithium-air batteries:status, challenges, and perspective[J]. ACS Catal., 2012,2:844-857. doi: 10.1021/cs300036v
Nie Y., Li L., Wei Z.D.. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem.Soc.Rev., 2015,44:2168-2201. doi: 10.1039/C4CS00484A
Bing Y.H., Liu H.S., Zhang L., Ghosh D., Zhang J.J.. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chem.Soc.Rev., 2010,39:2184-2202. doi: 10.1039/b912552c
Yu X.W., Ye S.Y.. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC:part Ⅰ.Physico-chemical and electronic interaction between Pt and carbon support and activity enhancement of Pt/C catalyst[J]. J.Power Sources, 2007,172:133-144. doi: 10.1016/j.jpowsour.2007.07.049
Wu G., More K.L., Johnston C.M., Zelenay P.. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332:443-447. doi: 10.1126/science.1200832
Steele B.C.H., Heinzel A.. Materials for fuel-cell technologies[J]. Nature, 2001,414:345-352. doi: 10.1038/35104620
Birry L., Zagal J.H., Dodelet J.P.. Does CO poison Fe-based catalysts for ORR[J]. Electrochem.Commun., 2010,12:628-631. doi: 10.1016/j.elecom.2010.02.016
Gasteiger H.A., Kocha S.S., Sompalli B., Wagner F.T.. Activity benchmarks and requirements for Pt Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl.Catal.B, 2005,56:9-35. doi: 10.1016/j.apcatb.2004.06.021
Debe M.K.. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012,486:43-51. doi: 10.1038/nature11115
Collman J.P., Brauman J.I., Halbert T.R., Suslick K.S.. Nature of O2 and CO binding to metalloporphyrins and heme proteins[J]. Proc.Natl.Acad.Sci.U.S.A., 1976,73:3333-3337. doi: 10.1073/pnas.73.10.3333
Song S.Q., Liang Y.R., Li Z.H.. Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions[J]. Appl.Catal.B, 2010,98:132-137. doi: 10.1016/j.apcatb.2010.05.021
Song S.Q., Yin S.B., Li Z.H.. Effect of pore diameter of wormholelike mesoporous carbon supports on the activity of Pt nanoparticles towards hydrogen electrooxidation[J]. J.Power Sources, 2010,195:1946-1949. doi: 10.1016/j.jpowsour.2009.10.009
Chen K.Y., Huang X.B., Wan C.Y., Liu H.. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes[J]. Chem.Commun., 2015,51:7891-7894. doi: 10.1039/C5CC02028J
Tang J., Liu J., Li C.L.. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew.Chem.Int.Ed., 2015,54:588-593.
Wei J., Liang Y., Zhang X.Y.. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts[J]. Nanoscale, 2015,7:6247-6254. doi: 10.1039/C5NR00331H
Wan K., Long G.F., Liu M.Y.. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Appl.Catal.B, 2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054
Wang R.F., Wang H., Zhou T.b.. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J]. J. Power Sources, 2015,274:741-747. doi: 10.1016/j.jpowsour.2014.10.049
Rodríguez-Reinoso F.. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998,36:159-175. doi: 10.1016/S0008-6223(97)00173-5
Calvillo L., Lázaro M., García-Bordejé E.. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J.Power Sources, 2007,169:59-64. doi: 10.1016/j.jpowsour.2007.01.042
Dai L.M., Xue Y.H., Qu L.T., Choi H.J., Baek J.B.. Metal-free catalysts for oxygen reduction reaction[J]. Chem.Rev., 2015,115:4823-4892. doi: 10.1021/cr5003563
Zhao Z.H., Li M.T., Zhang L.P., Dai L.M., Xia Z.H.. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Adv.Mater., 2015,27:6834-6840. doi: 10.1002/adma.201503211
Duan J.J., Chen S., Jaroniec M., Qiao S.Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catal., 2015,5:5207-5234. doi: 10.1021/acscatal.5b00991
Hao L., Zhang S.S., Liu R.J.. Electrocatalysts:bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction(Adv.Mater.20/2015)[J]. Adv.Mater., 2015,273189. doi: 10.1002/adma.201570138
Yang J., Sun H.Y., Liang H.Y.. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and graphene[J]. Adv.Mater., 2016,28:4606-4613. doi: 10.1002/adma.v28.23
Gong K.P., Du F., Xia Z.H., Durstock M., Dai L.M.. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323:760-764. doi: 10.1126/science.1168049
Proietti E., Jaouen F., Lefèvre M.. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2011,2416. doi: 10.1038/ncomms1427
Yang W.X., Liu X.J., Yue X.Y., Jia J.B., Guo S.J.. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. J. Am.Chem.Soc., 2015,137:1436-1439. doi: 10.1021/ja5129132
Ding W., Li L., Xiong K.. Shape fixing via salt recrystallization:a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. J.Am.Chem.Soc., 2015,137:5414-5420. doi: 10.1021/jacs.5b00292
Hu Y., Jensen J.O., Zhang W.. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angew.Chem.Int. Ed., 2014,53:3675-3679. doi: 10.1002/anie.v53.14
Wang L., Ambrosi A., Pumera M.. Metal-free catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities[J]. Angew.Chem.Int.Ed., 2013,52:13818-13821. doi: 10.1002/anie.201309171
Wang Q., Zhou Z.Y., Lai Y.J.. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing[J]. J.Am.Chem.Soc., 2014,136:10882-10885. doi: 10.1021/ja505777v
Liang Y.Y., Li Y.G., Wang H.L.. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat.Mater., 2011,10:780-786. doi: 10.1038/nmat3087
Yang M., Yao X.X., Wang G., Ding H.J.. A simple method to synthesize sea urchin-like polyaniline hollow spheres[J]. Colloids Surf.A, 2008,324:113-116. doi: 10.1016/j.colsurfa.2008.04.004
Meng Z.K., Wang Q., Qu X.Z.. Papillae mimetic hairy composite spheres towards lotus leaf effect coatings[J]. Polymer, 2011,52:597-601. doi: 10.1016/j.polymer.2010.12.020
Byun H.S., Burford R.P., Fane A.G.. Sulfonation of cross-linked asymmetric membranes based on polystyrene and divinylbenzene[J]. Appl.Polym.Sci., 1994,52:825-835. doi: 10.1002/app.1994.070520612
Ozer O., Ince A., Karagoz B., Bicak N.. Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins[J]. Desalination, 2013,309:141-147. doi: 10.1016/j.desal.2012.09.024
Yang M., Ma J., Niu Z.W.. Synthesis of spheres with complex structures using hollow latex cages as templates[J]. Adv.Funct.Mater., 2005,15:1523-1528. doi: 10.1002/(ISSN)1616-3028
Ferrari A.C., Meyer J.C., Scardaci V.. Raman spectrum of graphene and graphene layers[J]. Phys.Rev.Lett., 2006,97187401. doi: 10.1103/PhysRevLett.97.187401
Dhavale V.M., Gaikwad S.S., George L., Devi R.N., Kurungot S.. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages:efficient and stable water-to-dioxygenelectrocatalysts[J]. Nanoscale, 2014,6:13179-13187. doi: 10.1039/C4NR03578J
Singh S.K., Dhavale V.M., Kurungot S.. Surface-tuned Co3O4 nanoparticles dispersed on nitrogen-doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application[J]. ACS Appl.Mater. Interfaces, 2015,7:21138-21149. doi: 10.1021/acsami.5b04865
Bahlawane N., Ngamou P.H.T., Vannier V.. Tailoring the properties and the reactivity of the spinel cobalt oxide[J]. Phys.Chem.Chem.Phys., 2009,11:9224-9232. doi: 10.1039/b910707j
Xiao J.W., Kuang Q., Yang S.H.. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction[J]. Sci.Rep., 2013,32300. doi: 10.1038/srep02300
Deng D.H., Yu L., Pan X.L.. Size effect of graphene on electrocatalytic activation of oxygen[J]. Chem.Commun., 2011,47:10016-10018. doi: 10.1039/c1cc13033a
Yuan W.J., Zhou Y., Li Y.R.. The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet[J]. Sci.Rep., 2013,32248. doi: 10.1038/srep02248
Guo Q.X., Xie Y., Wang X.J.. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chem.Phys.Lett., 2003,380:84-87. doi: 10.1016/j.cplett.2003.09.009
Liu W.J., Tian K., He Y.R., Jiang H., Yu H.Q.. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environ.Sci. Technol., 2014,48:13951-13959. doi: 10.1021/es504184c
Zheng Y., Jiao Y., Ge L., Jaroniec M., Qiao S.Z.. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angew.Chem.Int.Ed., 2013,125:3192-3198. doi: 10.1002/ange.201209548
Su Y.H., Zhu Y.H., Jiang H.L.. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2014,6:15080-15089. doi: 10.1039/C4NR04357J
Zhao Y., Watanabe K., Hashimoto K.. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. J.Am.Chem. Soc., 2012,134:19528-19531. doi: 10.1021/ja3085934
Yang L.J., Jiang S.J., Zhao Y.. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew.Chem.Int.Ed., 2011,123:7270-7273. doi: 10.1002/ange.v123.31
Yang Z., Yao Z., Li G.F.. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012,6:205-211. doi: 10.1021/nn203393d
Zhao Y., Yang L.J., Chen S.. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes[J]. J.Am.Chem.Soc., 2013,135:1201-1204. doi: 10.1021/ja310566z
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887