Effect of chirality on conformation and cellular uptake of poly(S-(o-nitrobenzyl)-L, D-cysteine)polypeptides
- Corresponding author: Dong Chang-Ming, cmdong@sjtu.edu.cn
Citation:
Liu Yang, Dong Chang-Ming. Effect of chirality on conformation and cellular uptake of poly(S-(o-nitrobenzyl)-L, D-cysteine)polypeptides[J]. Chinese Chemical Letters,
;2017, 28(4): 827-831.
doi:
10.1016/j.cclet.2016.11.006
Yashima E., Maeda K. Chirality-responsive helical polymers[J]. Macromolecules, 2008,41:3-12. doi: 10.1021/ma071453s
Ma X., Azeem E.A., Liu X.L., Cheng Y.X., Zhu C.J. Synthesis and tunable chiroptical properties of chiral BODIPY-based D-π-A conjugated polymers[J]. J. Mater.Chem.C, 2014,2:1076-1084.
Khan O.F., Zaia E.W., Yin H.. Ionizable amphiphilic dendrimer-based nanomaterials with alky-chain-substituted amines for tunable sirna delivery to the liver endothelium in vivo[J]. Angew.Chem.Int.Ed.Engl., 2014,52:14397-14401.
Weiser H., Riss G., Kormann A.W. Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats[J]. J.Nutr., 1996,126:2539-2549.
Deming T.J. Synthetic polypeptides for biomedical applications[J]. Prog.Polym. Sci., 2007,32:858-875. doi: 10.1016/j.progpolymsci.2007.05.010
Kay M.A. State-of-the-art gene-based therapies:the road ahead[J]. Nat.Rev. Genet., 2011,12:316-328. doi: 10.1038/nrg2971
Shim M.S., Kwon Y.J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications[J]. Adv.Drug Deliv.Rev., 2012,64:1046-1059. doi: 10.1016/j.addr.2012.01.018
Yin H., Kanasty R.L., Eltoukhy A.A.. Non-viral vectors for gene-based therapy[J]. Nat.Rev.Genet., 2014,15:541-555. doi: 10.1038/nrg3763
Aoyama Y., Kanamori T., Nakai T.. Artificial viruses and their application to gene delivery.Size-controlled gene coating with glycocluster nanoparticles[J]. J.Am.Chem.Soc., 2003,125:3455-3457. doi: 10.1021/ja029608t
Nakai T., Kanamori T., Sando S., Aoyama Y. Remarkably size-regulated cell invasion by artificial viruses.Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery[J]. J.Am.Chem.Soc., 2003,125:8465-8475. doi: 10.1021/ja035636f
Liu G., Dong C.M. Photoresponsive poly(S-(o-nitrobenzyl)-L-cysteine)-b-PEO from a L-cysteine N-carboxyanhydride monomer:synthesis, self-assembly, and phototriggered drug release[J]. Biomacromolecules, 2012,13:1573-1583. doi: 10.1021/bm300304t
Martins S., Tho I., Reimold I.. Brain delivery of camptothecin by means of solid lipid nanoparticles:formulation design, in vitro and in vivo studies[J]. Int.J. Pharm., 2012,439:49-62. doi: 10.1016/j.ijpharm.2012.09.054
Kotharangannagari V.K., A.Sa'nchez-Ferrer , Ruokolainen J., Mezzenga R. Thermoreversible gel-sol behavior of rod-coil-rod peptide-basectriblock copolymers[J]. Macromolecules, 2012,45:1982-1990. doi: 10.1021/ma2026379
Swanekamp R.J., DiMaio J.T.M., Bowerman C.J., Nilsson B.L. Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled b-sheet fibrils[J]. J.Am.Chem.Soc., 2012,134:5556-5559. doi: 10.1021/ja301642c
Ding J., Li C., Zhang Y.. Chirality-mediated polypeptide micelles for regulated drug delivery[J]. Acta Biomater., 2015,11:346-355. doi: 10.1016/j.actbio.2014.09.043
Liao L.Y., Liu J., Dreaden E.C.. A convergent synthetic platform for single-nanoparticle combination cancer therapy:ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin[J]. J.Am.Chem.Soc., 2014,136:5896-5899. doi: 10.1021/ja502011g
Zhao B.W., Zhou Z.X., Shen Y.Q. Effects of chirality on gene delivery efficiency of polylysine[J]. Chin.J.Polym.Sci., 2016,34:94-103. doi: 10.1007/s10118-016-1735-2
Liu Y., Cheng C.Y., R.K.Prud'homme , Fox R.O. Mixing in a multi-inlet vortex mixer(MIVM)for flash nano-precipitation[J]. Chem.Eng.Sci., 2008,63:2829-2842. doi: 10.1016/j.ces.2007.10.020
Hu Y., Xie J.W., Tong Y.W., Wang C.H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells[J]. J. Control.Release, 2007,118:7-17. doi: 10.1016/j.jconrel.2006.11.028
Deepagan V.G., Sarmento B., Menon D.. In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles[J]. Nanomedicine, 2012,7:507-519. doi: 10.2217/nnm.11.139
Han H., Davis M.E. Single-antibody, targeted nanoparticle delivery of camptothecin[J]. Mol.Pharm., 2013,10:2558-2567. doi: 10.1021/mp300702x
Householder K.T., DiPerna D.M., Chung E.P.. Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma[J]. Int.J.Pharm., 2015,479:374-380. doi: 10.1016/j.ijpharm.2015.01.002
Chen K.J., Tang L., Garcia M.A.. The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles[J]. Biomaterials, 2012,33:1162-1169. doi: 10.1016/j.biomaterials.2011.10.044
Barua S., Yoo J.W., Kolhar P.. Particle shape enhances specificity of antibody-displaying nanoparticles[J]. Proc.Natl.Acad.Sci.U.S.A., 2013,110:3270-3275. doi: 10.1073/pnas.1216893110
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Liqing Chen , Zheming Zhang , Yanhong Liu , Chenfei Liu , Congcong Xiao , Liming Gong , Mingji Jin , Zhonggao Gao , Wei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581