Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton
- Corresponding author: Lu Qing-Hua, qhlu@sjtu.edu.cn
Citation:
Chen Shuang-Shuang, Lu Xue-Min, Lu Qing-Hua. Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton[J]. Chinese Chemical Letters,
;2017, 28(4): 818-826.
doi:
10.1016/j.cclet.2016.10.039
Yeung T., Georges P.C., Flanagan L.A.. Effects of substrate stiffness on cell morphology cytoskeletal structure, and adhesion[J]. Cell Motil.Cytoskeleton, 2005,60:24-34. doi: 10.1002/(ISSN)1097-0169
Mullen C.A., Vaughan T.J., Voisin M.C.. Cell morphology and focal adhesion location alters internal cell stress[J]. J.R.Soc.Interface, 2014,1120140885. doi: 10.1098/rsif.2014.0885
Keselowsky B.G., Collard D.M., García A.J.. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion[J]. J.Biomed.Mater.Res.A, 2003,66A:247-259. doi: 10.1002/jbm.a.v66a:2
Gibson L.J., Ashby M.F. The mechanics of three-dimensional cellular materials[J]. Proc.R.Soc.A, 1982,382:43-59. doi: 10.1098/rspa.1982.0088
Chen J., Irianto J., Inamdar S.. Cell mechanics structure, and function are regulated by the stiffness of the three-dimensional microenvironment[J]. Biophys.J., 2012,103:1188-1197. doi: 10.1016/j.bpj.2012.07.054
Bao G., Suresh S. Cell and molecular mechanics of biological materials[J]. Nat. Mater., 2003,2:715-725. doi: 10.1038/nmat1001
Tan J., Saltzman W.M. Biomaterials with hierarchically defined micro-and nanoscale structure[J]. Biomaterials, 2004,25:3593-3601. doi: 10.1016/j.biomaterials.2003.10.034
Ranella A., Barberoglou M., Bakogianni S., Fotakis C., Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomater., 2010,6:2711-2720. doi: 10.1016/j.actbio.2010.01.016
Zhao L.Z., Mei S.L., Chu P.K., Zhang Y.M., Wu Z.F. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions[J]. Biomaterials, 2010,31:5072-5082. doi: 10.1016/j.biomaterials.2010.03.014
Chen C.S., Mrksich M., Huang S., Whitesides G.M., Ingber D.E. Geometric control of cell life and death[J]. Science, 1997,276:1425-1428. doi: 10.1126/science.276.5317.1425
Newhart A., Janicki S.M. Seeing is believing:visualizing transcriptional dynamics in single cells[J]. J.Cell.Physiol., 2014,229:259-265. doi: 10.1002/jcp.24445
Dubey G.P., Ben-Yehuda S.. Intercellular nanotubes mediate bacterial communication[J]. Cell, 2011,144:590-600. doi: 10.1016/j.cell.2011.01.015
Fletcher D.A., Mullins D. Cell mechanics and the cytoskeleton[J]. Nature, 2010,463:485-492. doi: 10.1038/nature08908
Yamaki K., Harada I., Goto M., Cho C.S., Akaike T. Regulation of cellular morphology using temperature-responsive hydrogel for integrin-mediated mechanical force stimulation[J]. Biomaterials, 2009,30:1421-1427. doi: 10.1016/j.biomaterials.2008.11.036
Chen L., Liu X.L., Su B.. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces[J]. Adv.Mater., 2011,23:4376-4380. doi: 10.1002/adma.201102435
Frame M.D., Sarelius I.H. Flow-induced cytoskeletal changes in endothelial cells growing on curved surfaces[J]. Microcirculation, 2000,7:419-427. doi: 10.1111/micc.2000.7.issue-6
J. A. Sanz-Herrera, P. Moreo, J. M. García-Aznar, M. Doblaré, On the effect of substrate curvature on cell mechanics, Biomaterials 30(2009)6674-6686.
James J., Goluch E.D., Hu H., Liu C., Mrksich M. Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity[J]. Cell Motil.Cytoskeleton, 2008,65:841-852. doi: 10.1002/cm.v65:11
Tamura M. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN[J]. Science, 1998,280:1614-1617. doi: 10.1126/science.280.5369.1614
Kim S.V., Mehal W.Z., Dong X.M.. Modulation of cell adhesion and motility in the immune system by Myo1f[J]. Science, 2006,314:136-139. doi: 10.1126/science.1131920
Cukierman E., Pankov R., Stevens D.R., Yamada K.M. Taking cell-matrix adhesions to the third dimension[J]. Science, 2001,294:1708-1712. doi: 10.1126/science.1064829
Raic A., Rödling L., Kalbacher H., Lee-Thedieck C.. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells[J]. Biomaterials, 2014,35:929-940. doi: 10.1016/j.biomaterials.2013.10.038
Park J., Babensee J.E. Differential functional effects of biomaterials on dendritic cell maturation[J]. Acta Biomater., 2012,8:3606-3617. doi: 10.1016/j.actbio.2012.06.006
A. J. García, Get a grip: integrins in cell-biomaterial interactions, Biomaterials 26(2005)7525-7529.
Whitesides G.M., Grzybowski B. Self-assembly at all scales[J]. Science, 2002,295:2418-2421. doi: 10.1126/science.1070821
Xu Y.X., Sheng K.X., Li C., Shi G.Q. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010,4:4324-4330. doi: 10.1021/nn101187z
Zhang S.Y., Regulacio M.D., Han M.Y. Self-assembly of colloidal one-dimensional nanocrystals[J]. Chem.Soc.Rev., 2014,43:2301-2323. doi: 10.1039/c3cs60397k
Yamazaki H., Gotou S., Ito K.. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film[J]. J.Biosci. Bioeng., 2014,118:455-460. doi: 10.1016/j.jbiosc.2014.03.006
A.S.de León, J.Rodríguez-Hernández , Cortajarena A.L. Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion[J]. Biomaterials, 2013,34:1453-1460. doi: 10.1016/j.biomaterials.2012.10.074
Zhu Y.D., Sheng R.L., Luo T.. Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers:surface morphology control and biomedical application as scaffolds for cell growth[J]. ACS Appl.Mater.Interfaces, 2011,3:2487-2495. doi: 10.1021/am200371c
Wu X.H., Wang S.F. Regulating MC3T3-E1 cells on deformable poly (e-caprolactone)honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent[J]. ACS Appl.Mater.Interfaces, 2012,4:4966-4975. doi: 10.1021/am301334s
Yap F.L., Zhang Y. Assembly of polystyrene microspheres and its application in cell micropatterning[J]. Biomaterials, 2007,28:2328-2338. doi: 10.1016/j.biomaterials.2007.01.034
M.Hernández-Guerrero , Stenzel M.H. Honeycomb structured polymer films via breath figures[J]. Polym.Chem., 2012,3:563-577. doi: 10.1039/C1PY00219H
Chen S.S., Lu X.M., Zhu D.D., Lu Q.H. Targeted grafting of thermoresponsive polymers from a penetrative honeycomb structure for cell sheet engineering[J]. Soft Matter, 2015,11:7420-7427. doi: 10.1039/C5SM01769F
Chen S.S., Lu X.M., Hu Y., Lu Q.H. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold[J]. Biomater.Sci., 2015,3:85-93. doi: 10.1039/C4BM00233D
Yin Y.D., Alivisatos A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005,437:664-670. doi: 10.1038/nature04165
Kawano T., Sato M., Yabu H., Shimomura M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs):uniform porous polymer scaffolds prepared by the breath figure technique[J]. Biomater.Sci., 2014,2:52-56. doi: 10.1039/C3BM60195A
Biazar E., Khorasani M.T., Joupari M.D. Cell adhesion and surface properties of polystyrene surfaces grafted with poly(N-isopropylacrylamide)[J]. Chin.J.Polym. Sci., 2013,31:1509-1518. doi: 10.1007/s10118-013-1335-3
The software was provided on the website: http://cn.mathworks.com/index.html?s_tid=gn_logo.
Yao X., Peng R., Ding J.D. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv.Mater., 2013,25:5257-5286. doi: 10.1002/adma.201301762
Jeon H., C.G.Simon Jr., Kim G. A mini-review:cell response to microscale, nanoscale, and hierarchical patterning of surface structure[J]. J.Biomed.Mater. Res.Part B Appl.Biomater., 2014,102:1580-1594.
Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation[J]. Nat.Rev.Immunol., 2008,8:958-969. doi: 10.1038/nri2448
Dalby M.J., Gadegaard N., Oreffo R.O.C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat.Mater., 2014,13:558-569. doi: 10.1038/nmat3980
Juan S.H., Tur J.M.M. Tensegrity frameworks:static analysis review[J]. Mech. Mach.Theory, 2008,43:859-881. doi: 10.1016/j.mechmachtheory.2007.06.010
Zhang G.H., Hou R.X., Zhan D.X.. Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility[J]. Chin.Chem.Lett., 2013,24:710-714. doi: 10.1016/j.cclet.2013.05.011
Heng L.P., Meng X.F., Wang B., Jiang L. Bioinspired design of honeycomb structure interfaces with controllable water adhesion[J]. Langmuir, 2013,29:9491-9498. doi: 10.1021/la401991n
Dembo M., Wang Y.L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts[J]. Biophys.J., 1999,76:2307-2316. doi: 10.1016/S0006-3495(99)77386-8
Ingber D.E. Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton[J]. J.Cell Sci., 1993,104:613-627.
Ingber D.E., Tensegrity I. Cell structure and hierarchical systems biology[J]. J.Cell Sci., 2003,116:1157-1173. doi: 10.1242/jcs.00359
Ingber D.E., Tensegrity I.I. How structural networks influence cellular information processing networks[J]. J.Cell Sci., 2003,116:1397-1408. doi: 10.1242/jcs.00360
Ingber D.E. Tensegrity:the architectural basis of cellular mechanotransduction[J]. Annu.Rev.Physiol., 1997,59:575-599. doi: 10.1146/annurev.physiol.59.1.575
Crawford-Young S.J.. Effects of microgravity on cell cytoskeleton and embryogenesis[J]. Int. J. Dev.Biol., 2006,50:183-191. doi: 10.1387/ijdb.052077sc
Cogoli A., Tschopp A., Fuchs-Bislin P.. Cell sensitivity to gravity[J]. Science, 1984,225:228-230. doi: 10.1126/science.6729481
Xi Chen , Xue Zhang , Shuai Yang , Jie Wang , Tian Tang , Maling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Zhichao Zhou , Fuqian Chen , Xiaotong Xia , Dong Ye , Rong Zhou , Lei Li , Tao Deng , Zhenhua Ding , Fang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323