Citation: Liu Shuang-Ke, Hong Xiao-Bin, Li Yu-Jie, Xu Jing, Zheng Chun-Man, Xie Kai. A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries[J]. Chinese Chemical Letters, ;2017, 28(2): 412-416. doi: 10.1016/j.cclet.2016.10.038 shu

A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries

  • Corresponding author: Liu Shuang-Ke, liu_sk@139.com Zheng Chun-Man, zhengchunman@hotmail.com
  • Received Date: 30 August 2016
    Revised Date: 11 October 2016
    Accepted Date: 24 October 2016
    Available Online: 2 February 2016

Figures(5)

  • A nanoporous N-doped reduced graphene oxide (p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries. The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%. When used as sulfur cathode, the obtained p-N-rGO/S composite has a high reversible capacity of 1110 mAh g-1 at 1C rate and stable cycling performance with 781.8 mAh g-1 retained after 110 cycles, much better than those of the rGO/S composite. The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping, which provide efficient contact and wetting with the electrolyte, accommodate volume expansion and immobilize polysulfides during cycling.
  • 加载中
    1. [1]

      Y. Yang, G.Y. Zheng, Y. Cui. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013,42:3018-3032. doi: 10.1039/c2cs35256g

    2. [2]

      A. Manthiram, Y.Z. Fu, Y.S. Su. Challenges and prospects of lithium-sulfur batteries[J]. Acc. Chem. Res., 2013,46:1125-1134. doi: 10.1021/ar300179v

    3. [3]

      S. Evers, L.F. Nazar. New approaches for high energy density lithium-sulfur battery cathodes[J]. Acc. Chem. Res., 2013,46:1135-1143. doi: 10.1021/ar3001348

    4. [4]

      Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan. Lithium-sulfur batteries:electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed., 2013,52:13186-13200. doi: 10.1002/anie.201304762

    5. [5]

      D.W. Wang, Q.C. Zeng, G.M. Zhou. Carbon-sulfur composites for Li-S batteries:status and prospects[J]. J. Mater. Chem. A, 2013,1:9382-9394. doi: 10.1039/c3ta11045a

    6. [6]

      J.Z. Chen, D.X. Wu, E. Walter. Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries[J]. Nano Energy, 2015,13:267-274. doi: 10.1016/j.nanoen.2015.01.031

    7. [7]

      G.Y. Xu, B. Ding, P. Nie. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2014,6:194-199. doi: 10.1021/am4038728

    8. [8]

      Z. Li, Y. Jiang, L.X. Yuan. A highly ordered meso@microporous carbonsupported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014,8:9295-9303. doi: 10.1021/nn503220h

    9. [9]

      G.Y. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui. Hollow carbon nanofiberencapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Lett., 2011,11:4462-4467. doi: 10.1021/nl2027684

    10. [10]

      L.W. Ji, M.M. Rao, S. Aloni. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy Environ. Sci., 2011,4:5053-5059. doi: 10.1039/c1ee02256c

    11. [11]

      M.M. Rao, X.Y. Geng, X.P. Li, S.J. Hu, W.S. Li. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte[J]. J. Power Sources, 2012,212:179-185. doi: 10.1016/j.jpowsour.2012.03.111

    12. [12]

      Y. Zhao, W.L. Wu, J.X. Li, Z.C. Xu, L.H. Guan. Encapsulating MWNTs into hollow porous carbon nanotubes:a tube-in-tube carbon nanostructure for highperformance lithium-sulfur batteries[J]. Adv. Mater., 2014,26:5113-5118. doi: 10.1002/adma.201401191

    13. [13]

      J.C. Guo, Y.H. Xu, C.S. Wang. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Lett., 2011,11:4288-4294. doi: 10.1021/nl202297p

    14. [14]

      L.X. Yuan, H.P. Yuan, X.P. Qiu, L.Q. Chen, W.T. Zhu. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. J. Power Sources, 2009,189:1141-1146. doi: 10.1016/j.jpowsour.2008.12.149

    15. [15]

      J.Z. Wang, L. Lu, M. Choucair. Sulfur-graphene composite for rechargeable lithium batteries[J]. J. Power Sources, 2011,196:7030-7034. doi: 10.1016/j.jpowsour.2010.09.106

    16. [16]

      L.C. Yin, J.L. Wang, F.J. Lin, J. Yang, Y. Nuli. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy Environ. Sci., 2012,5:6966-6972. doi: 10.1039/c2ee03495f

    17. [17]

      M.Q. Zhao, Q. Zhang, J.Q. Huang. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nat. Commun., 2014,53410.  

    18. [18]

      C.X. Zu, A. Manthiram. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J]. Adv. Energy Mater., 2013,3:1008-1012. doi: 10.1002/aenm.v3.8

    19. [19]

      S.T. Lu, Y. Chen, X.H. Wu, Z.D. Wang, Y. Li. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading[J]. Sci. Rep., 2014,44629.  

    20. [20]

      X. Yang, L. Zhang, F. Zhang, Y. Huang, Y.S. Chen. Sulfur-infiltrated graphenebased layered porous carbon cathodes for high-performance lithium-sulfur batteries[J]. ACS Nano, 2014,8:5208-5215. doi: 10.1021/nn501284q

    21. [21]

      X.A. Chen, Z.B. Xiao, X.T. Ning. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for highperformance lithium-sulfur batteries[J]. Adv. Energy Mater., 20141301988.  

    22. [22]

      B. Ding, C.Z. Yuan, L.F. Shen. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2013,1:1096-1101. doi: 10.1039/C2TA00396A

    23. [23]

      C. Wang, K. Su, W. Wan. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014,2:5018-5023. doi: 10.1039/c3ta14921h

    24. [24]

      X.W. Wang, Z.A. Zhang, Y.H. Qu, Y.Q. Lai, J. Li. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries[J]. J. Power Sources, 2014,256:361-368. doi: 10.1016/j.jpowsour.2014.01.093

    25. [25]

      Y.C. Qiu, W.F. Li, W. Zhao. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Lett., 2014,14:4821-4827. doi: 10.1021/nl5020475

    26. [26]

      G.M. Zhou, E. Paek, G.S. Hwang, A. Manthiram. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nat. Commun., 2015,67760. doi: 10.1038/ncomms8760

    27. [27]

      H.W. Chen, C.H. Wang, W.L. Dong. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance[J]. Nano Lett., 2015,15:798-802. doi: 10.1021/nl504963e

    28. [28]

      D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, B.H. Han. A general and scalable synthesis approach to porous graphene[J]. Nat. Commun., 2014,54716. doi: 10.1038/ncomms5716

    29. [29]

      D.C. Marcano, D.V. Kosynkin, J.M. Berlin. Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4:4806-4814. doi: 10.1021/nn1006368

    30. [30]

      Z.S. Wu, A. Winter, L. Chen. Three-dimensional nitrogen and boron codoped graphene for high-performance all-solid-state supercapacitors[J]. Adv. Mater., 2012,24:5130-5135. doi: 10.1002/adma.201201948

    31. [31]

      C. Tang, Q. Zhang, M.Q. Zhao. Nitrogen-doped aligned carbon nanotube/graphene sandwiches:facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Adv. Mater., 2014,26:6100-6105. doi: 10.1002/adma.201401243

    32. [32]

      L.F. Xiao, Y.L. Cao, J. Xiao. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life,[J]. Adv. Mater., 2012,24:1176-1181. doi: 10.1002/adma.v24.9

    33. [33]

      S.Q. Chen, X.D. Huang, B. Sun. Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances[J]. J. Mater. Chem. A, 2014,2:16199-16207. doi: 10.1039/C4TA03877K

    34. [34]

      S.K. Liu, K. Xie, Z.X. Chen. A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2015,3:11395-11402. doi: 10.1039/C5TA00897B

  • 加载中
    1. [1]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    2. [2]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    3. [3]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    4. [4]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    5. [5]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    6. [6]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    7. [7]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    8. [8]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    9. [9]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    10. [10]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    11. [11]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    12. [12]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    13. [13]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    14. [14]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    15. [15]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    20. [20]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

Metrics
  • PDF Downloads(0)
  • Abstract views(821)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return