Recent advances in electrocatalysts for non-aqueous Li-O2 batteries
- Corresponding author: Liu Jie-Hua, liujh@hfut.edu.cn
Citation:
Chen Wei, Gong Ya-Feng, Liu Jie-Hua. Recent advances in electrocatalysts for non-aqueous Li-O2 batteries[J]. Chinese Chemical Letters,
;2017, 28(4): 709-718.
doi:
10.1016/j.cclet.2016.10.023
Dunn B., Kamath H., Tarascon J.M.. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011,334:928-935. doi: 10.1126/science.1212741
Goodenough J.B., Park K.S.. The Li-ion rechargeable battery:a perspective[J]. J. Am.Chem.Soc., 2013,135:1167-1176. doi: 10.1021/ja3091438
Liu J.H., Chen J.S., Wei X.F., Lou X.W., Liu X.W.. Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage[J]. Adv.Mater., 2011,23:998-1002. doi: 10.1002/adma.v23.8
Liu J.H., Liu X.W.. Two-dimensional nanoarchitectures for lithium storage[J]. Adv. Mater., 2012,24:4097-4111. doi: 10.1002/adma.201104993
Girishkumar G., McCloskey B., Luntz A.C., Swanson S., Wilcke W.. Lithium-air battery:promise and challenges[J]. J.Phys.Chem.Lett., 2010,1:2193-2203. doi: 10.1021/jz1005384
Xu K., von Cresce A.. Interfacing electrolytes with electrodes in Li ion batteries[J]. J.Mater.Chem., 2011,21:9849-9864. doi: 10.1039/c0jm04309e
Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M.. Li-O2 and Li-S batteries with high energy storage[J]. Nat.Mater., 2012,11:19-29.
Abraham K.M., Jiang Z.. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J.Electrochem.Soc., 1996,143:1-5. doi: 10.1149/1.1836378
Ogasawara T., Débart A., Holzapfel M., Novák P., Bruce P.G.. Rechargeable Li2O2 electrode for lithium batteries[J]. J.Am.Chem.Soc., 2006,128:1390-1393. doi: 10.1021/ja056811q
Wu C., Liao C.B., Li L., Yang J.. Ethylene sulfite based electrolyte for non-aqueous lithium oxygen batteries[J]. Chin.Chem.Lett., 2016,27:1485-1489. doi: 10.1016/j.cclet.2016.03.023
Laoire C.O., Mukerjee S., Abraham K.M., Plichta E.J., Hendrickson M.A.. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. J.Phys.Chem.C, 2010,114:9178-9186. doi: 10.1021/jp102019y
Kumar B., Kumar J.. Cathodes for solid-state lithium-oxygen cells:roles of nasicon glass-ceramics[J]. J.Electrochem.Soc., 2010,157:A611-A616. doi: 10.1149/1.3356988
Wang Y.G., Zhou H.S.. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J]. J.Power Sources, 2010,195:358-361. doi: 10.1016/j.jpowsour.2009.06.109
Lu J., Li L., Park J.B.. Aprotic and aqueous Li-O2 batteries[J]. Chem.Rev., 2014,114:5611-5640. doi: 10.1021/cr400573b
Peng Z.Q., Freunberger S.A., Hardwick L.J.. Oxygen reactions in a non-aqueous Li+ electrolyte[J]. Angew.Chem.Int.Ed., 2011,50:6351-6355. doi: 10.1002/anie.201100879
McCloskey B.D., Scheffler R., Speidel A., Girishkumar G., Luntz A.C.. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials:some implications for Li-air batteries[J]. J.Phys.Chem., 2012,116:23897-23905.
Wang Z.L., Xu D., Xu J.J., Zhang X.B.. Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes[J]. Chem.Soc.Rev., 2014,43:7746-7786. doi: 10.1039/C3CS60248F
Park S., Shao Y.Y., Liu J., Wang Y.. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells:status and perspective[J]. Energy Environ.Sci., 2012,5:9331-9344. doi: 10.1039/c2ee22554a
Lu Y.C., Xu Z.C., Gasteiger H.A.. Platinum-gold nanoparticles:a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. J. Am.Chem.Soc., 2010,132:12170-12171. doi: 10.1021/ja1036572
Lu Y.C., Gasteiger H.A., Shao-Horn Y.. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries[J]. J.Am.Chem.Soc., 2011,133:19048-19051. doi: 10.1021/ja208608s
Su D.W., Dou S.X., Wang G.X.. Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries[J]. NPG Asia Mater., 2005,7e155.
Sun B., Munroe P., Wang G.X.. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Sci.Rep., 2013,32247. doi: 10.1038/srep02247
Luo W.B., Gao X.W., Chou S.L., Wang J.Z., Liu H.K.. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries[J]. Adv.Mater., 2015,27:6862-6869. doi: 10.1002/adma.201502262
Cheng F.Y., Zhang T.R., Zhang Y.. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew.Chem.Int.Ed., 2013,52:2474-2477. doi: 10.1002/anie.v52.9
Cui Y.M., Wen Z.Y., Sun S.J., Lu Y., Jin J.. Mesoporous Co3O4 with different porosities as catalysts for the lithium-oxygen cell[J]. Solid State Ion., 2012,225:598-603. doi: 10.1016/j.ssi.2012.01.021
Tong S.F., Zheng M.B., Lu Y.. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries[J]. J.Mater.Chem.A, 2015,3:16177-16182. doi: 10.1039/C5TA03685B
Zhang Z., Zhou G., Chen W., Lai Y.Q., Li J.. Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries[J]. ECS Electrochem. Lett., 2013,3:A8-A10. doi: 10.1149/2.006401eel
Lee Y., Ye B.U., Yu H.K.. Facile synthesis of single crystalline metallic RuO2 nanowires and electromigration-induced transport properties[J]. J.Phys.Chem. C, 2011,115:4611-4615. doi: 10.1021/jp200426s
Liao K.M., Wang X.B., Sun Y.. An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide[J]. Energy Environ. Sci., 2015,8:1992-1997. doi: 10.1039/C5EE01451D
Liao K.M., Zhang T., Wang Y.Q.. Nanoporous Ru as a carbon-and binder-free cathode for Li-O2 batteries[J]. ChemSusChem, 2015,8:1429-1434. doi: 10.1002/cssc.v8.8
Zhang C.F., Tang D.M., Hu X.K.. Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium-O2 batteries[J]. Energy Storage Mater., 2016,2:8-13. doi: 10.1016/j.ensm.2015.10.004
Lu X.Y., Deng J.W., Si W.P.. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes[J]. Adv.Sci., 2015,21500113. doi: 10.1002/advs.201500113
Yoon K.R., Lee G.Y., Jung J.W.. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries[J]. Nano Lett., 2016,16:2076-2083. doi: 10.1021/acs.nanolett.6b00185
Liu Q.C., Jiang Y.S., Xu J.J.. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries[J]. Nano Res., 2015,8:576-583. doi: 10.1007/s12274-014-0689-3
Zhang J., Luan Y.P., Lyu Z.. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries[J]. Nanoscale, 2015,7:14881-14888. doi: 10.1039/C5NR02983J
Liu Q.C., Xu J.J., Xu D., Zhang X.B.. Flexible lithium-oxygen battery based on a recoverable cathode[J]. Nat.Commun., 2015,67892. doi: 10.1038/ncomms8892
Hu X.F., Cheng F.Y., Han X.P., Zhang T.R., Chen J.. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries[J]. Small, 2015,11:809-813. doi: 10.1002/smll.201401790
Liu L.L., Wang J., Hou Y.Y.. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries[J]. Small, 2016,12:602-611. doi: 10.1002/smll.v12.5
Mohamed S.G., Tsai Y.Q., Chen C.J.. Ternary spinel MCo2O4(M=Mn, Fe Ni, and Zn)porous nanorods as bifunctional cathode materials for lithium-O2 batteries[J]. ACS Appl.Mater.Interfaces, 2015,7:12038-12046. doi: 10.1021/acsami.5b02180
Suntivich J., Gasteiger H.A., Yabuuchi N.. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat.Chem., 2011,3:546-550. doi: 10.1038/nchem.1069
Oh S.H., Nazar L.F.. Oxide catalysts for rechargeable high-capacity Li-O2 batteries[J]. Adv.Energy Mater., 2012,2:903-910. doi: 10.1002/aenm.201200018
Kim J., Yin X., Tsao K.C., Fang S.H., Yang H.. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J.Am.Chem.Soc., 2014,136:14646-14649. doi: 10.1021/ja506254g
Wu F., Zhang X.X., Zhao T.L.. Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries[J]. J.Mater.Chem.A, 2015,3:17620-17626. doi: 10.1039/C5TA04673D
Kundu D., Black R., Berg E.J., Nazar L.F.. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries[J]. Energy Environ.Sci., 2015,8:1292-1298. doi: 10.1039/C4EE02587C
Zhang J., Zhao Y.B., Zhao X., Liu Z.L., Chen W.. Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential[J]. Sci.Rep., 2014,46005.
Oh S.H., Black R., Pomerantseva E., Lee J.H., Nazar L.F.. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nat.Chem., 2012,4:1004-1010. doi: 10.1038/nchem.1499
Wu F., Wu S.X., Chen R.J., Chen S., Wang G.Q.. Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries[J]. Chin. Chem.Lett., 2009,20:1255-1258. doi: 10.1016/j.cclet.2009.04.036
Ding N., Chien S.W., Hor T.S.A.. Influence of carbon pore size on the discharge capacity of Li-O2 batteries[J]. J.Mater.Chem.A, 2014,2:12433-12441. doi: 10.1039/C4TA01745E
Sun B., Chen S.Q., Liu H., Wang G.X.. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Adv.Funct.Mater., 2015,25:4436-4444. doi: 10.1002/adfm.v25.28
Wang Z.L., Xu D., Huang Y.. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries[J]. Chem.Commun., 2012,48:976-978. doi: 10.1039/C2CC16239C
Wang Z.L., Xu D., Xu J.J., Zhang L.L., Zhang X.B.. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Adv.Funct.Mater., 2012,22:3699-3705. doi: 10.1002/adfm.v22.17
Guo Z.Y., Wang J., Wang F.. Leaf-like graphene oxide with a carbon nanotube midrib and its application in energy storage devices[J]. Adv.Funct. Mater., 2013,23:4840-4846.
Zhang G.Q., Zheng J.P., Liang R.. Lithium-air batteries using SWNT/CNF buckypapers as air electrodes[J]. J.Electrochem.Soc., 2010,157:A953-A956. doi: 10.1149/1.3446852
Liu S.H., Wang Z.Y., Yu C.. Free-standing, hierarchically porous carbon nanotubefilm as a binder-free electrode for high-energy Li-O2 batteries[J]. J. Mater.Chem.A, 2013,1:12033-12037. doi: 10.1039/c3ta13069j
Meng W., Liu S.W., Wen L.N., Qin X.. Carbon microspheres air electrode for rechargeable Li-O2 batteries[J]. RSC Adv., 2015,5:52206-52209. doi: 10.1039/C5RA08445H
Huang X., Yu H., Tan H.T.. Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries[J]. Adv.Funct. Mater., 2014,24:6516-6523. doi: 10.1002/adfm.v24.41
Jung H.G., Jeong Y.S., Park J.B.. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013,7:3532-3539. doi: 10.1021/nn400477d
Xie J., Yao X.H., Cheng Q.M.. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode[J]. Angew.Chem.Int. Ed., 2015,54:4299-4303. doi: 10.1002/anie.201410786
Kim Y.J., Lee H., Lee D.J., Park J.K., Kim H.T.. Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li-O2 batteries[J]. ChemSusChem, 2015,8:2496-2502. doi: 10.1002/cssc.201500520
Liu J.H., Shen A.L., Wei X.F.. Ultrathin wrinkled N-doped carbon nanotubes for noble-metal loading and oxygen reduction reaction[J]. ACS Appl. Mater.Interfaces, 2015,7:20507-20512. doi: 10.1021/acsami.5b07554
Liu J.H., Shen A.L., Wei X.F.. Homogenous core-shell nitrogen-doped carbon nanotubes for the oxygen reduction reaction[J]. ChemElectroChem, 2015,2:1892-1896. doi: 10.1002/celc.201500223
Liu S.Y., Zhu Y.G., Xie J.. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Adv.Energy Mater., 2014,41301960. doi: 10.1002/aenm.201301960
Qiu D.F., Bu G., Zhao B.. In situ growth of mesoporous NiO nanoplates on a graphene matrix as cathode catalysts for rechargeable lithium-air batteries[J]. Mater.Lett., 2015,141:43-46. doi: 10.1016/j.matlet.2014.11.033
Jee S.W., Choi W., Ahn C.H.. Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium-oxygen batteries[J]. J.Mater.Chem.A, 2015,3:13767-13775. doi: 10.1039/C5TA02442K
Jian Z.L., Liu P., Li F.J., Chen M.W., Zhou H.S.. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries[J]. J.Mater.Chem.A, 2014,2:13805-13809. doi: 10.1039/C4TA02516D
Xiao J., Mei D.H., Li X.L.. Hierarchically porous graphene as a lithium-air battery electrode[J]. Nano Lett., 2011,11:5071-5078. doi: 10.1021/nl203332e
Huang X.D., Sun B., Su D.W., Zhao D.Y., Wang G.X.. Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium-O2 batteries and oil adsorption applications[J]. J.Mater.Chem.A, 2014,2:7973-7979. doi: 10.1039/c4ta00829d
Zhou W., Zhang H.Z., Nie H.J.. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery[J]. ACS Appl.Mater.Interfaces, 2015,7:3389-3397. doi: 10.1021/am508513m
Ryu W.H., Yoon T.H., Song S.H.. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries[J]. Nano Lett., 2013,13:4190-4197. doi: 10.1021/nl401868q
Li F.J., Ohnishi R., Yamada Y.. Carbon supported TiN nanoparticles:an efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chem. Commun., 2013,49:1175-1177. doi: 10.1039/c2cc37042e
Kwak W.J., Lau K.C., Shin C.D.. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J]. ACS Nano, 2015,9:4129-4137. doi: 10.1021/acsnano.5b00267
Yi J., Liao K.M., Zhang C.F.. Facile in situ preparation of graphitic-C3N4@carbon paper as an efficient metal-free cathode for nonaqueous Li-O2 battery[J]. ACS Appl.Mater.Interfaces, 2015,7:10823-10827. doi: 10.1021/acsami.5b01727
Li J.X., Zou M.Z., Chen L.Z., Huang Z.G., Guan L.H.. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries[J]. J.Mater. Chem.A, 2014,2:10634-10638. doi: 10.1039/c4ta01831a
Wang J., Wu Z.X., Han L.L.. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction[J]. Chin.Chem.Lett., 2016,27:597-601. doi: 10.1016/j.cclet.2016.03.011
Zhai H.S., Cao L., Xia X.H.. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction[J]. Chin.Chem.Lett., 2013,24:103-106. doi: 10.1016/j.cclet.2013.01.030
Li Q., Cao R.G., Cho J., Wu G.. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries[J]. Phys.Chem.Chem.Phys., 2014,16:13568-13582. doi: 10.1039/c4cp00225c
Zhang Z., Bao J., He C.. Hierarchical carbon-nitrogen architectures with both mesopores and macrochannels as excellent cathodes for rechargeable Li-O2 batteries[J]. Adv.Funct.Mater., 2014,24:6826-6833. doi: 10.1002/adfm.v24.43
Zhao C.T., Yu C., Liu S.H.. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries[J]. Adv.Funct.Mater., 2015,25:6913-6920. doi: 10.1002/adfm.201503077
Shui J.L., Du F., Xue C.M., Li Q., Dai L.M.. Vertically aligned N-doped coral-like carbonfiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries[J]. ACS Nano, 2014,8:3015-3022. doi: 10.1021/nn500327p
Mi R., Li S.M., Liu X.C.. Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li-O2 batteries[J]. J.Mater.Chem.A, 2014,2:18746-18753. doi: 10.1039/C4TA03457K
Shui J.L., Karan N.K., Balasubramanian M., Li S.Y., Liu D.J.. Fe/N/C composite in Li-O2 battery:studies of catalytic structure and activity toward oxygen evolution reaction[J]. J.Am.Chem.Soc., 2012,134:16654-16661. doi: 10.1021/ja3042993
Zhang Z., Su L.W., Yang M.. A composite of Co nanoparticles highly dispersed on N-rich carbon substrates:an efficient electrocatalyst for Li-O2 battery cathodes[J]. Chem.Commun., 2014,50:776-778. doi: 10.1039/C3CC47149G
Wu G., Mack N.H., Gao W.. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes[J]. ACS Nano, 2012,6:9764-9776. doi: 10.1021/nn303275d
Prabu M., Ramakrishnan P., Ganesan P., Manthiram A., Shanmugam S.. LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries[J]. Nano Energy, 2015,15:92-103. doi: 10.1016/j.nanoen.2015.04.005
Tong S.F., Zheng M.B., Lu Y.. Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries[J]. Chem.Commun., 2015,51:7302-7304. doi: 10.1039/C5CC01114K
Luo W.B., Chou S.L., Wang J.Z., Zhai Y.C., Liu H.K.. A metal-free, free-standing, macroporous graphene@g-C3N4 composite air electrode for high-energy lithium oxygen batteries[J]. Small, 2015,11:2817-2824. doi: 10.1002/smll.201403535
Li F.J., Tang D.M., Chen Y.. Ru/ITO:a carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano Lett., 2013,13:4702-4707. doi: 10.1021/nl402213h
Yang Y., Fei H.L., Ruan G.D.. Carbon-free electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. ACS Appl.Mater.Interfaces, 2015,7:20607-20611. doi: 10.1021/acsami.5b04887
Yao X.H., Cheng Q.M., Xie J., Dong Q., Wang D.W.. Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations[J]. ACS Appl.Mater.Interfaces, 2015,7:21948-21955. doi: 10.1021/acsami.5b06592
Xu S.M., Zhu Q.C., Long J.. Low-overpotential Li-O2 batteries based on TFSI intercalated Co-Ti layered double oxides[J]. Adv.Funct.Mater., 2016,26:1365-1374. doi: 10.1002/adfm.v26.9
Zhang L.L., Zhang X.B., Wang Z.L.. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries[J]. Chem.Commun., 2012,48:7598-7600. doi: 10.1039/c2cc33933a
Asadi M., Kumar B., Liu C.. Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries[J]. ACS Nano, 2016,10:2167-2175. doi: 10.1021/acsnano.5b06672
Zhang T., Liao K.M., He P., Zhou H.S.. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ.Sci., 2016,9:1024-1030. doi: 10.1039/C5EE02803E
Liu Y., Li N., Wu S.C.. Reducing the charging voltage of a Li-O2 battery to 1.9 V by incorporating a photocatalyst[J]. Energy Environ.Sci., 2015,8:2664-2667. doi: 10.1039/C5EE01958C
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958