Citation: Taha Muhammad, Ali Shah Syed Adnan, Afifi Muhammad, Zulkeflee Manar, Sultan Sadia, Wadood Abdul, Rahim Fazal, Ismail Nor Hadiani. Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies[J]. Chinese Chemical Letters, ;2017, 28(3): 607-611. doi: 10.1016/j.cclet.2016.10.020 shu

Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies

  • Corresponding author: Taha Muhammad, taha_hej@yahoo.com Ali Shah Syed Adnan, syedadnan@salam.uitm.edu.my
  • Received Date: 17 June 2016
    Revised Date: 22 August 2016
    Accepted Date: 12 September 2016
    Available Online: 20 March 2016

Figures(2)

  • In this paper, synthesis and anticancer activities of morpholine hydrazones scaffold (1-17) thoroughly studied. Small series of morpholine hydrazones synthesized by treating 5-morpholinothiophene-2-carbaldehyde with different aryl hydrazides to form morpholine hydrazones scaffold (1-17). The in vitro anticancer potential of all these compounds was checked against human cancer cell lines like HepG2 (human hepatocellular liver carcinoma) and MCF-7 (human breast adenocarcinoma). Analogs 13 had similar substantial cytotoxic effects towards HepG2 with IC50 value 6.31±1.03 μmol/L when compared with the standard Doxorubicin (IC50 value 6.00±0.80 μmol/L); while compounds 5, 8 and 9 showed potent cytotoxicity against MCF-7 with IC50 value 7.08±0.42 μmol/L, 1.26±0.34 μmol/L and 11.22±0.22 μmol/L respectively when compared with the standard Tamoxifen (IC50=11.00±0.40 μmol/L). Molecular docking studies also performed to understand the binding interaction.
  • 加载中
    1. [1]

      Duncan C., White A.R.. Copper complexes as therapeutic agents[J]. Metallomics, 2012,4:127-138. doi: 10.1039/C2MT00174H

    2. [2]

      Ang C.Y., Tan S.Y., Zhao Y.L.. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy[J]. Org. Biomol. Chem., 2014,12:4776-4806. doi: 10.1039/c4ob00164h

    3. [3]

      Garza-Ortiz A., Maheswari P.U., Siegler M., Spek A.L., Reedijk J.. A new family of Ru (Ⅱ) complexes with a tridentate pyridine Schiff-base ligand and bidentate co-ligands:synthesis, characterization, structure and in vitro cytotoxicity studies[J]. New J. Chem., 2013,37:3450-3460. doi: 10.1039/c3nj00415e

    4. [4]

      Chen W.S., Ou W.Z., Wang L.Q.. Synthesis and biological evaluation of hydroxyl-substituted Schiff-bases containing ferrocenyl moieties[J]. Dalton Trans., 2013,42:15678-15686. doi: 10.1039/c3dt51977e

    5. [5]

      Rahman F.U., Ali A., Guo R.. Synthesis and anticancer activities of a novel class of mono-and di-metallic Pt (Ⅱ) (salicylaldiminato) (DMSO or Picolino) Cl complexes[J]. Dalton Trans., 2015,44:2166-2175. doi: 10.1039/C4DT03018D

    6. [6]

      Sawyers C.L., Abate-Shen C., Anderson K.C.. AACR cancer progress report 2013[J]. Clin. Cancer Res, 2013,19:S1-S98. doi: 10.1158/1078-0432.CCR-13-2107

    7. [7]

      Ribrag V., Dupuis J., Tilly H.. A dose-escalation study of SAR3419, an antiCD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma[J]. Clin. Cancer Res., 2014,20:213-220. doi: 10.1158/1078-0432.CCR-13-0580

    8. [8]

      Ghoussaini M., Fletcher O., Michailidou K.. Genome-wide association analysis identifies three new breast cancer susceptibility loci[J]. Nat. Genet., 2012,44:312-318. doi: 10.1038/ng.1049

    9. [9]

      Robert N.J., Diéras V., Glaspy J.. RIBBON-1:randomized, double-blind, placebo-controlled, phase Ⅲ trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer[J]. J. Clin. Oncol., 2011,29:1252-1260. doi: 10.1200/JCO.2010.28.0982

    10. [10]

      Rosenberg B., Van Camp L., Krigas T.. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode[J]. Nature, 1965,205:698-699. doi: 10.1038/205698a0

    11. [11]

      Sak A., Grehl S., Engelhard M.. Long-term in vivo effects of cisplatin on γ-H2AX foci signaling in peripheral lymphocytes of tumor patients after irradiation[J]. Clin. Cancer Res., 2009,15:2927-2934. doi: 10.1158/1078-0432.CCR-08-0650

    12. [12]

      Galluzzi L., Senovilla L., Vitale I.. Molecular mechanisms of cisplatin resistance[J]. Oncogene, 2012,31:1869-1883. doi: 10.1038/onc.2011.384

    13. [13]

      Andrs M., Korabecny J., Jun D.. Phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors:importance of the morpholine ring[J]. J. Med. Chem., 2015,58:41-71. doi: 10.1021/jm501026z

    14. [14]

      Dugave C., Demange L.. Cis-trans isomerization of organic molecules and biomolecules:implications and applications[J]. Chem. Rev., 2003,103:2475-2532. doi: 10.1021/cr0104375

    15. [15]

      Arrieta A., Oteagui D., Zubia A.. Solvent-free thermal and microwaveassisted[3+2] cycloadditions between stabilized azomethine ylides and nitrostyrenes. An experimental and theoretical study[J]. J. Org. Chem., 2007,72:4313-4322. doi: 10.1021/jo062672z

    16. [16]

      Polak A.. Mode of action of morpholine derivatives[J]. Ann. N. Y. Acad. Sci., 1988,554:221-228.

    17. [17]

      A. Kerkenaar, The model of action of dimethylmorpholines, Recent Trends in Discovery, Development and Evaluation of Antifungal Agents, vol. 1, Prous Science Publ., 1987, pp. 523-542.

    18. [18]

      R.G.M.P. Pinto, B.V. Silva, A.C. Pinto, Syntheis of convolutamidin analogues, 35th Annual Meeting of the Brazilian Chemical Society (2013).

    19. [19]

      Taha M., Ismail N.H., Imran S.. Identification of bisindolylmethane-hydrazone hybrids as novel inhibitors of β-glucuronidase, DFT, and in silico SAR intimations[J]. RSC Adv., 2016,6:3276-3289. doi: 10.1039/C5RA19513F

    20. [20]

      Taha M., Ismail N.H., Imran S., Selvaraj M., Rahim F.. Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies[J]. RSC Adv., 2016,6:3003-3012. doi: 10.1039/C5RA23072A

    21. [21]

      Imran S., Taha M., Ismail N.H.. Synthesis, in vitro and docking studies of new flavone ethers as α-glucosidase inhibitors[J]. Chem. Biol. Drug Des., 2016,87:361-373. doi: 10.1111/cbdd.2016.87.issue-3

    22. [22]

      Taha M., Ismail N.H., Imran S.. Hybrid benzothiazole analogs as antiurease agent:synthesis and molecular docking studies[J]. Bioorg. Chem., 2016,66:80-87. doi: 10.1016/j.bioorg.2016.03.010

    23. [23]

      Taha M., Ismail N.H., Imran S.. Novel thiosemicarbazide-oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis[J]. RSC Adv., 2016,6:33733-33742. doi: 10.1039/C5RA28012E

    24. [24]

      Taha M., Ismail N.H., Imran S.. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1, 3, 4-oxadiazoles[J]. Bioorg. Chem., 2016,66:117-123. doi: 10.1016/j.bioorg.2016.04.006

    25. [25]

      A. Kaapro, J. Ojanen, Protein Docking. Available at http://www.lce.hut.fi/teaching/S-114.500/k2002/Protdock.pdf, 2002.

    26. [26]

      Taha M., Ismail N.H., Khan A.. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies[J]. Bioorg. Med. Chem. Lett., 2015,25:3285-3289. doi: 10.1016/j.bmcl.2015.05.069

    27. [27]

      Taha M., Ismail N.H., Imran S.. Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors:in silico studies and SAR predictions[J]. Med. Chem. Comm., 2015,6:1826-1836. doi: 10.1039/C5MD00280J

    28. [28]

      Taha M., Ismail N.H., Lalani S.. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies[J]. Eur. J. Med. Chem., 2015,92:387-400. doi: 10.1016/j.ejmech.2015.01.009

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    6. [6]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    7. [7]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    8. [8]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    13. [13]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    14. [14]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    15. [15]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    18. [18]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

Metrics
  • PDF Downloads(1)
  • Abstract views(710)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return