Citation: Xu Hui-Li, Zhang Wei-De. Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2[J]. Chinese Chemical Letters, ;2017, 28(1): 143-148. doi: 10.1016/j.cclet.2016.10.008 shu

Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2

  • Corresponding author: Zhang Wei-De, zhangwd@scut.edu.cn
  • Received Date: 14 April 2016
    Revised Date: 24 June 2016
    Accepted Date: 24 June 2016
    Available Online: 14 January 2016

Figures(9)

  • In this study, a new facile preparation method of nanocomposites consisting of graphene oxide and manganese dioxide nanowires (GO/MnO2 NWs) was developed. The morphology, structure and composition of the resulted products were characterized by transmission electron microscopy, X-ray diffraction and N2 adsorption and desorption. The GO/MnO2 nanocomposite was used as an electrode material for non-enzymatic determination of hydrogen peroxide. The proposed sensor exhibits excellent electrocatalytic performance for the determination of hydrogen peroxide in phosphate buffer solution (PBS, pH 7) at an applied potential of 0.75 V. The non-enzymatic biosensor for determination of hydrogen peroxide displayed a wide linear range of 4.90 ÇŒmol L-1-4.50 mmol L-1 with a correlation coefficient of 0.9992, a low detection limit of 0.48 ÇŒmol L-1 and a high sensitivity of 191.22 ÇŒA (mmol L-1)-1 cm-2 (signal/noise, S/N=3). Moreover, the non-enzymatic biosensor shows an excellent selectivity.
  • 加载中
    1. [1]

      Ruoff R.. Graphene:calling all chemists[J]. Nat. Nanotechnol., 2008,3:10-11. doi: 10.1038/nnano.2007.432

    2. [2]

      Srivastava S.K., Pionteck J.. Recent advances in preparation, structure, properties and applications of graphite oxide[J]. J. Nanosci. Nanotechnol., 2015,15:1984-2000. doi: 10.1166/jnn.2015.10047

    3. [3]

      Stankovich S., Dikin D.A., Dommett G.H.B.. Graphene-based composite materials[J]. Nature, 2006,442:282-286. doi: 10.1038/nature04969

    4. [4]

      Seredych M., Bandosz T.J.. Removal of ammonia by graphite oxide via its intercalation and reactive adsorption[J]. Carbon, 2007,45:2130-2132. doi: 10.1016/j.carbon.2007.06.007

    5. [5]

      Khan M., Tahir M.N., Adil S.F.. Graphene based metal and metal oxide nanocomposites:synthesis, properties and their applications[J]. J. Mater. Chem. A, 2015,3:18753-18808. doi: 10.1039/C5TA02240A

    6. [6]

      Park S., Ruoff R.S.. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol., 2009,4:217-224. doi: 10.1038/nnano.2009.58

    7. [7]

      Bissessur R., Scully S.F.. Intercalation of solid polymer electrolytes into graphite oxide[J]. Solid State Ion., 2007,178:877-882. doi: 10.1016/j.ssi.2007.02.030

    8. [8]

      Paredes J.I., Villar S., Rodil -, Mart A., nez í, Alonso -, Tasc J.M.D.. Graphene oxide dispersions in organic solvents[J]. Langmuir, 2008,24:10560-10564. doi: 10.1021/la801744a

    9. [9]

      Compton O.C., Nguyen S.B.T.. Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials[J]. Small, 2010,6:711-723. doi: 10.1002/smll.v6:6

    10. [10]

      Song Y., Luo Y.N., Zhu C.Z.. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials[J]. Biosens. Bioelectron., 2016,76:195-212. doi: 10.1016/j.bios.2015.07.002

    11. [11]

      Kim F., Cote L.J., Huang J.X.. Graphene oxide:surface activity and twodimensional assembly[J]. Adv. Mater., 2010,22:1954-1958. doi: 10.1002/adma.200903932

    12. [12]

      Zhu Y.W., Murali S., Cai W.W.. Graphene and graphene oxide:synthesis, properties, and applications[J]. Adv. Mater., 2010,22:3906-3924. doi: 10.1002/adma.201001068

    13. [13]

      Celik N., Balachandran W., Manivannan N.. Graphene-based biosensors:methods, analysis and future perspectives[J]. IET Circits Devices Syst., 2015,9:434-445. doi: 10.1049/iet-cds.2015.0235

    14. [14]

      Vashist S.K., Luong J.H.T.. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites[J]. Carbon, 2015,84:519-550. doi: 10.1016/j.carbon.2014.12.052

    15. [15]

      Lawal A.T.. Synthesis and utilisation of graphene for fabrication of electrochemical sensors[J]. Talanta, 2015,131:424-443. doi: 10.1016/j.talanta.2014.07.019

    16. [16]

      Liu J.Q., Liu Z., Barrow C.J., Yang W.R.. Molecularly engineered graphene surfaces for sensing applications:a review[J]. Anal. Chim. Acta, 2015,859:1-19. doi: 10.1016/j.aca.2014.07.031

    17. [17]

      Wang Y., Li Y.M., Tang L.H., Lu J., Li J.H.. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochem. Commun., 2009,11:889-892. doi: 10.1016/j.elecom.2009.02.013

    18. [18]

      Yu G.H., Hu L.B., Vosgueritchian M.. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Lett., 2011,11:2905-2911. doi: 10.1021/nl2013828

    19. [19]

      Liu Z.X., Xing Y., Chen C.H., Zhao L.L., Suib S.L.. Framework doping of indium in manganese oxide materials:synthesis, characterization, and electrocatalytic reduction of oxygen[J]. Chem. Mater., 2008,20:2069-2071. doi: 10.1021/cm703553p

    20. [20]

      Chen J., Zhang W.D., Ye J.S.. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite[J]. Electrochem. Commun., 2008,10:1268-1271. doi: 10.1016/j.elecom.2008.06.022

    21. [21]

      Xu C., Wang X.. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates[J]. Small, 2009,5:2212-2217. doi: 10.1002/smll.v5:19

    22. [22]

      Xu C., Wu X.D., Zhu J.W., Wang X.. Synthesis of amphiphilic graphite oxide[J]. Carbon, 2008,46:386-389. doi: 10.1016/j.carbon.2007.11.045

    23. [23]

      Zhang L., Fang Z., Ni Y.H., Zhao G.C.. Direct electrocatalytic oxidation of hydrogen peroxide based on nafion and microspheres MnO2 modified glass carbon electrode[J]. Int. J. Electrochem. Sci., 2009,4:407-413.

    24. [24]

      Han Y., Zheng J.B., Dong S.Y.. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites[J]. Electrochim. Acta, 2013,90:35-43. doi: 10.1016/j.electacta.2012.11.117

    25. [25]

      Hocevar S.B., Ogorevc B., Schachl K., Kalcher K.. Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon fiber microelectrode[J]. Electroanalysis, 2004,16:1711-1716. doi: 10.1002/(ISSN)1521-4109

    26. [26]

      Zhang P., Guo D., Li Q.H.. Manganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2[J]. Mater. Lett., 2014,125:202-205. doi: 10.1016/j.matlet.2014.03.172

    27. [27]

      Dong S., Xi J.B., Wu Y.N.. High loading MnO2 nanowires on graphene paper:facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells[J]. Anal. Chim. Acta, 2015,853:200-206. doi: 10.1016/j.aca.2014.08.004

    28. [28]

      Xiao X.P., Song Y.H., Liu H.Y.. Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing[J]. J. Mater. Sci., 2013,48:4843-4850. doi: 10.1007/s10853-013-7202-3

    29. [29]

      Li L.M., Du Z.F., Liu S.. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite[J]. Talanta, 2010,82:1637-1641. doi: 10.1016/j.talanta.2010.07.020

    30. [30]

      Xu B., Ye M.L., Yu Y.X., Zhang W.D.. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes[J]. Anal. Chim. Acta, 2010,674:20-26. doi: 10.1016/j.aca.2010.06.004

    31. [31]

      Jiang L.C., Zhang W.D.. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing[J]. Electroanalysis, 2009,21:988-993. doi: 10.1002/elan.v21:8

  • 加载中
    1. [1]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    6. [6]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    7. [7]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    8. [8]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    9. [9]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    10. [10]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    11. [11]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    14. [14]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    15. [15]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    20. [20]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

Metrics
  • PDF Downloads(1)
  • Abstract views(846)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return