Citation: Govindaraju Santhosh, Tabassum Sumaiya, Khan Riyaz-ur-Rahaman, Afzal Pasha Mohamed. Meglumine catalyzed one-pot green synthesis of novel 4,7-dihydro-1H-pyrazolo[3,4-b]pyridin-6-amines[J]. Chinese Chemical Letters, ;2017, 28(2): 437-441. doi: 10.1016/j.cclet.2016.09.013 shu

Meglumine catalyzed one-pot green synthesis of novel 4,7-dihydro-1H-pyrazolo[3,4-b]pyridin-6-amines

  • Corresponding author: Afzal Pasha Mohamed, m_af_pasha@ymail.com
  • Received Date: 12 June 2016
    Revised Date: 26 August 2016
    Accepted Date: 26 August 2016
    Available Online: 21 February 2016

Figures(2)

  • Meglumine efficiently catalyzes the one-pot, five-component reaction of hydrazine, ethyl acetoacetate, aryl aldehydes, substituted phenylacetonitriles and ammonium acetate in ethanol at room temperature to afford novel 4,7-dihydro-1H-pyrazolo[3,4-b]pyridin-6-amine derivatives. The present approach offers several advantages such as shorter reaction durations, low cost, excellent yields, milder reaction conditions, simple workup procedure and is environment friendly. All the synthesized derivatives are characterized by IR, 1H NMR, 13C NMR, HRMS and CHN analysis.
  • 加载中
    1. [1]

      (a) J. Zhu, H. Bienaymé, Multicomponent Reactions, John Wiley & Sons, 2006; (b) I. Ugi, Recent progress in the chemistry of multicomponent reactions, Pure Appl. Chem. 73(2001) 187-191; (c) V. Nair, C. Rajesh, A. Vinod, et al., Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes, Acc. Chem. Res. 36(2003) 899-907; (d) D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs):the new frontier, Angew. Chem. Int. Ed. (2005) 1602-1634.

    2. [2]

      (a) S. Benetti, R. Romagnoli, C. De Risi, G. Spalluto, V. Zanirato, Mastering b-keto esters, Chem. Rev. 95(1995) 1065-1114; (b) P. Langer, Regio-and diastereoselective cyclization reactions of free and masked 1,3-dicarbonyl dianions with 1,2-dielectrophiles, Chem. Eur. J. 7(2001) 3858-3866; (c) C. Simon, T. Constantieux, J. Rodriguez, Utilisation of 1,3-dicarbonyl derivatives in multicomponent reactions, Eur. J. Org. Chem. 2004(2004) 4957-4980.

    3. [3]

      (a) B. Ganem, Strategies for innovation in multicomponent reaction design, Acc. Chem. Res. 42(2009) 463-472; (b) A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89.

    4. [4]

      (a) G.L. Adams, P.J. Carroll, A.B. Smith III, Access to the akuammiline family of alkaloids:totalsynthesisof(+)-scholarisineA,J.Am.Chem.Soc.135(2012)519-528; (b) Y. Inaba, T. Hasuda, Y. Hitotsuyanagi, et al., Abietane diterpenoids and a sesquiterpene pyridine alkaloid from Euonymus lutchuensis, J. Nat. Prod. 76(2013) 1085-1090; (c) J.A. Bull, J.J. Mousseau, G. Pelletier, A.B. Charette, Synthesis of pyridine and dihydropyridine derivatives by regio-and stereoselective addition to N-activated pyridines, Chem. Rev. 112(2012) 2642-2713; (d) P.W. Ondachi, D.L. Comins, Synthesis of fused-ring nicotine derivatives from (S) nicotine, J. Org. Chem. 75(2010) 1706-1716; (e) A.D. Melhado, W.E. Brenzovich Jr., A.D. Lackner, F.D. Toste, Gold-catalyzed threecomponentcoupling:oxidative oxyarylation of alkenes, J. Am. Chem. Soc.132(2010) 8885-8887; (f) H.E. Montenegro, P. Ramírez-López, M.C. de la Torre, M. Asenjo, M.A. Sierra, Two versatile and parallel approaches to highly symmetrical open and closed natural product-based structures, Chem. Eur. J. 16(2010) 3798-3814; (g) S.A. Snyder, S.P. Breazzano, A.G. Ross, Y. Lin, A.L. Zografos, Total synthesis of diverse carbogenic complexity within the resveratrol class from a common building block, J. Am. Chem. Soc. 131(2009) 1753-1765.

    5. [5]

      (a) K. Shekarrao, P.P. Kaishap, V. Saddanapu, et al., Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines, RSC Adv. 4(2014) 24001-24006; (b) C. Kurumurthy, B. Veeraswamy, P.S. Rao, et al., Synthesis of novel 1,2,3-triazole tagged pyrazolo[3,4-b]pyridine derivatives and their cytotoxic activity, Bioorg. Med. Chem. Lett. 24(2014) 746-749; (c) D.K. Dodiya, A.R. Trivedi, V.B. Kataria, V.H. Shah, Advances in the synthesis of pyrazolo[3,4-b]pyridines, Curr. Org. Chem. 16(2012) 400-417; (d) M. El-Borai, H. Rizk, M. Abd-Aal, I. El-Deeb, Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities-part 1, Eur. J. Med. Chem. 48(2012) 92-96; (e) Y. Hao, X.P. Xu, T. Chen, L.L. Zhao, S.J. Ji, Multicomponent approaches to 8-carboxylnaphthyl-functionalized pyrazolo[3,4-b]pyridinederivatives,Org.Biomol. Chem. 10(2012) 724-728; (f) D.B. Kendre, R.B. Toche, M.N. Jachak, Synthesis of pyrazolo[3,4-b]pyridines and attachment of amino acids and carbohydrate as linkers, J. Heterocycl. Chem. 45(2008) 1281-1286.

    6. [6]

      (a) S. Wenglowsky, K.A. Ahrendt, A.J. Buckmelter, et al., Pyrazolopyridine inhibitors of B-Raf V600E. Part 2:structure-activity relationships, Bioorg. Med. Chem. Lett. 21(2011) 5533-5537; (b) J. Quiroga, J. Portilla, B. Insuasty, et al., Solvent-free microwave synthesis of bis-pyrazolo[3,4-b:4',3'-e]-pyridines and study of their antifungal properties, J. Heterocycl. Chem. 42(2005) 61-66; (c) R.N. Misra, D.B. Rawlins, H.Y. Xiao, et al., 1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases, Bioorg. Med. Chem. Lett. 13(2003) 1133-1136; (d) A. Straub, J. Benet-Buckholz, R. Fröde, et al., Metabolites of orally active NOindependent pyrazolopyridine stimulators of soluble guanylate cyclase, Bioorg. Med. Chem. Lett. 10(2002) 1711-1717.

    7. [7]

      E. De Clercq. Recent highlights in the development of new antiviral drugs[J]. Curr. Opin. Microbiol., 2005,8:552-560. doi: 10.1016/j.mib.2005.08.010

    8. [8]

      R.G. Stein, J.H. Biel, T. Singh. Antimalarials. 4-Substituted 1H-pyrazolo[3,4-b]quinolines[J]. J. Med. Chem., 1970,13:153-155. doi: 10.1021/jm00295a049

    9. [9]

      T. Sado, A. Inoue. Preparation of 1H-pyrazolo[3,4-b]pyrazines as blood platelet[J]. Chem. Abstr., 199078422k.

    10. [10]

      H. de Mello, A. Echevarria, A.M. Bernardino, M. Canto-Cavalheiro, L.L. Leon. Antileishmanial pyrazolopyridine derivatives:synthesis and structure-activity relationship analysis[J]. J. Med. Chem., 2004,47:5427-5432. doi: 10.1021/jm0401006

    11. [11]

      (a) S.A. Thompson, P.B. Wingrove, L. Connelly, P.J. Whiting, K.A. Wafford. Tracazolate reveals a novel type of allosteric interaction with recombinant γ-aminobutyric acid A receptors, Mol. Pharmacol., 2002,61: 861-869;(b) J.P. Stasch, E.M. Becker, C. Alonso-Alija, et al., NO-independent regulatory site on soluble guanylate cyclase, Nature, 2001,410: 212-215;(c) J. Zezula, A. Slany, W. Sieghart, Interaction of allosteric ligands with GABA A receptors containing one, two, or three different subunits[J]. Eur. J. Pharmacol., 1996,301:207-214. doi: 10.1016/0014-2999(96)00066-0

    12. [12]

      (a) T. Fong, S. Heymsfield. Cannabinoid-1 receptor inverse agonists:current understanding of mechanism of action and unanswered questions, Int. J. Obes., 2009,33: 947-955;(b) C.S. Stika, G.A. Gross, G. Leguizamon, et al., A prospective randomized safety trial of celecoxib for treatment of preterm labor, Am. J. Obstet. Gynecol., 2002,187: 653-660;(c) K. Dilger, C. Herrlinger, J. Peters, et al., Effects of celecoxib and diclofenac on blood pressure, renal function, and vasoactive prostanoids in young and elderly subjects, J. Clin. Pharmacol., 2002,42: 985-994;(d) P. Chavatte, S. Yous, C. Marot, N. Baurin, D. Lesieur, Three-dimensional quantitative structure-activity relationships of cyclo-oxygenase-2(COX-2) inhibitors:a comparative molecular field analysis[J]. J. Med. Chem., 2001,44:3223-3230. doi: 10.1021/jm0101343

    13. [13]

      J. Witherington, V. Bordas, A. Gaiba. 6-Aryl-pyrazolo[3,4-b]pyridines:potent inhibitors of glycogen synthase kinase-3(GSK-3)[J]. Bioorg. Med. Chem. Lett., 2003,13:3055-3057. doi: 10.1016/S0960-894X(03)00645-0

    14. [14]

      A. Akahane, A. Tanaka, WO 2002100864 A1, 2003, Chem. Abstr. (2003) 24732a.

    15. [15]

      K. Imaizumi, T. Sado, Jpn Kokai Tokkyo Koho JP 0680570[9480570] (Cl. A61K31/495) (22 Mar. 1994), Chem. Abstr. (1994) 91797w.

    16. [16]

      S.A. Saggar, J.T. Sisko, T.J. Tucker. HIV reverse transcriptase inhibitors[J]. Google Patents, 2010.

    17. [17]

      G. Chiu, S. Li, P. Connolly. 3-(Benzimidazolyl)-pyrazolopyridines as protein kinase inhibitors, their preparation, pharmaceutical compositions, and use in therapy[J]. PCT Int. Appl. WO, 20062006130673.

    18. [18]

      S. Huang, R. Lin, Y. Yu. Synthesis of 3-(1H-benzimidazol-2-yl)-5-isoquinolin-4-ylpyrazolo[1,2-b]pyridine, a potent cyclin dependent kinase 1(CDK1) inhibitor[J]. Bioorg. Med. Chem. Lett., 2007,17:1243-1245. doi: 10.1016/j.bmcl.2006.12.031

    19. [19]

      D.B. Kendre, R.B. Toche, M.N. Jachak. Synthesis of novel dipyrazolo[3,4-b:3,4-d]pyridines and study of their fluorescence behavior[J]. Tetrahedron, 2007,63:11000-11004. doi: 10.1016/j.tet.2007.08.052

    20. [20]

      M.A. El Mhammedi, A. Chtaini. Investigation of the inhibitive effect of pyrazolo[3,4-b]pyridine on corrosion of stainless steel in 1 M HCl solutions[J]. Leonardo Electron. J. Pract. Technol., 2007:37-46.  

    21. [21]

      (a) K. Balamurugan, S. Perumal, J.C. Menéndez, New four-component reactions in water:a convergent approach to the metal-free synthesis of spiro[indoline/acenaphthylene-3,4'-pyrazolo[3,4-b]pyridine derivatives, Tetrahedron 67(2011) 3201-3208; (b) A. Soliman, Synthesis of novel pyrazolopyridine and pyridopyrimidine derivatives, J. Heterocycl. Chem. 48(2011) 592-596; (c) A. Rahmati, Synthesis of 4-aryl-3-methyl-6-oxo-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-b]pyridine-5-carbonitrile via a one-pot, three-component reaction, Tetrahedron Lett. 51(2010) 2967-2970; (d) A. Díaz-Ortiz, J.R. Carrillo, F.P. Cossío, et al., Synthesis of pyrazolo[3,4-b]pyridines by cycloaddition reactions under microwave irradiation, Tetrahedron 56(2000) 1569-1577.

    22. [22]

      (a) C.S. Hege, S.M. Schiller, Non-toxic catalysts for ring-opening polymerizations of biodegradable polymers at room temperature for biohybrid materials, Green Chem. 16(2014) 1410-1416; (b) P.K. Sahu, P.K. Sahu, S.K. Gupta, D.D. Agarwal, Chitosan:an efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles, Ind. Eng. Chem. Res. 53(2014) 2085-2091; (c) I. Siddiqui, P. Rai, A. Srivastava, Chitosan:an efficient promoter for the synthesis of 2-aminopyrimidine-5-carbonitrile derivatives in solvent free conditions, New J. Chem. 38(2014) 3791-3795; (d) E. Mosaddegh, A. Hassankhani, Application and characterization of eggshell as a new biodegradable and heterogeneous catalyst in green synthesis of 7,8-dihydro-4H-chromen-5(6H)-ones, Catal. Commun. 33(2013) 70-75; (e) Z.N. Siddiqui, K. Khan, Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions, New J. Chem. 37(2013) 1595-1602; (f) G.Y. Sun, J.T. Hou, J.J. Dou, et al., Xanthan sulfuric acid as an efficient biodegradable and recyclable catalyst for the one-pot synthesis of α-amino phosphonates, J. Chin. Chem. Soc. 57(2010) 1315-1320.

    23. [23]

      (a) R.Y. Guo, Z.M. An, L.P. Mo, et al., Meglumine:a novel and efficient catalyst for one-pot, three-component combinatorial synthesis of functionalized 2-amino-4H-pyrans, ACS Comb. Sci. 15(2013) 557-563; (b) J. Yang, H. Li, M. Li, J. Peng, Y. Gu, Multicomponent reactions of β-ketosulfones and formaldehyde in a bio-based binary mixture solvent system composed of meglumine and gluconic acid aqueous solution, Adv. Synth. Catal. 354(2012) 688-700.

    24. [24]

      (a) S. Tabassum, S. Govindaraju, R.R. Khan, M.A. Pasha, Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives, Ultrason. Sonochem. 24(2015) 1-7; (b) S. Tabassum, S. Govindaraju, R.R. Khan, M.A. Pasha, Ultrasound mediated, green innovation for the synthesis of polysubstituted 1,4-dihydropyridines, RSC Adv. 6(2016) 29802-29810; (c) K.B. Ramesh, M.A. Pasha, Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2-I as a new heterogeneous catalyst and their anticancer activity, Bioorg. Med. Chem. Lett. 24(2014) 3907-3913; (d) S.H.S.Azzam,A.Siddekha,M.A.Pasha,One-potfour-componentsynthesisof some novel octahydroquinolindiones using ZnO as an efficient catalyst in water, Tetrahedron Lett. 53(2012) 6306-6309.

  • 加载中
    1. [1]

      Jiang GongFengling ZhengHanqing ZhangWeihan ShuHao WangNi ZhangPengbing HuangChuancai ZhangBin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    4. [4]

      Zhi-Peng BaoHefei YangRu-Han AYuanrui WangXiao-Feng Wu . Carbonylative five-component synthesis of amides and esters with α-quaternary carbon center. Chinese Chemical Letters, 2025, 36(11): 111150-. doi: 10.1016/j.cclet.2025.111150

    5. [5]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    6. [6]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    7. [7]

      Qijun Tang Wenguang Tu Zhigang Zou . Solar-driven methane-to-ethanol conversion by “intramolecular junction” with both high activity and selectivity. Chinese Journal of Structural Chemistry, 2025, 44(6): 100597-100597. doi: 10.1016/j.cjsc.2025.100597

    8. [8]

      Yanping Qiu Lei Ge . Low-coordination Cu3 motif for selective photocatalytic conversion of CO2 to ethanol. Chinese Journal of Structural Chemistry, 2025, 44(11): 100716-100716. doi: 10.1016/j.cjsc.2025.100716

    9. [9]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    10. [10]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    11. [11]

      Chun-Ying XuXiao-Lin LuanYuan-Yuan CuiCheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937

    12. [12]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    13. [13]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    14. [14]

      Xiuhua WangJianrong Steve Zhou . A dicationic nickel complex-catalyzed asymmetric synthesis of chiral benzylic amines: Evolution from reductive amination to borrowing hydrogen reaction. Chinese Chemical Letters, 2026, 37(2): 111148-. doi: 10.1016/j.cclet.2025.111148

    15. [15]

      Linlin YuXueli LiuRui GaoJialin MingYi QiuJie SuLiangbing Gan . Selective preparation of 18-membered open-cage fullerene with one imino and five carbonyl groups on the rim of the orifice. Chinese Chemical Letters, 2025, 36(6): 110382-. doi: 10.1016/j.cclet.2024.110382

    16. [16]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    17. [17]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    18. [18]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

Metrics
  • PDF Downloads(3)
  • Abstract views(1404)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return