Citation: Liu Wen-Dong, Yang Bai. Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials[J]. Chinese Chemical Letters, ;2017, 28(4): 675-690. doi: 10.1016/j.cclet.2016.09.004 shu

Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials

  • Corresponding author: Yang Bai, byangchem@jlu.edu.cn
  • Received Date: 18 July 2016
    Revised Date: 17 August 2016
    Accepted Date: 29 August 2016
    Available Online: 12 April 2016

Figures(15)

  • With the highly interdisciplinary of research and great development of microfabrication techniques, patterned surfaces have attracted great attention of researchers since they possess specific regularity and orderness of structures.In recent years, series of two dimensional patterned structures have been successfully fabricated, and widely used in anti-reflection, anti-fogging, self-cleaning, and sensing, etc.In the meantime, patterned structures have been gradually used in biologically relative fields such as biomaterials, aiming to deepen the perception of organism and understand the vital movements of human body.In this review, we provide a brief introduction on current status of techniques for two dimensional patterns fabrication, the applications of patterned surfaces in biologically related fields, and give out a prospective on the development of these patterned surfaces in the future.
  • 加载中
    1. [1]

      Bae W.-G., Kim H.N., Kim D.. 25th anniversary article:scalable multiscale patterned structures inspired by nature:the role of hierarchy[J]. Adv. Mater., 2014,26:675-700. doi: 10.1002/adma.201303412

    2. [2]

      Sun T.L., Qing G.Y., Su B.L., Jiang L.. Functional biointerface materials inspired from nature[J]. Chem.Soc.Rev., 2011,40:2909-2921. doi: 10.1039/c0cs00124d

    3. [3]

      Feng L., Li S., Li Y.. Super-hydrophobic surfaces:from natural to artificial[J]. Adv.Mater., 2002,14:1857-1860. doi: 10.1002/adma.200290020

    4. [4]

      Autumn K., Liang Y.A., Hsieh S.T.. Adhesive force of a single gecko foot-hair[J]. Nature, 2000,405:681-685. doi: 10.1038/35015073

    5. [5]

      Gao X., Yan X., Yao X.. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Adv. Mater., 2007,19:2213-2217. doi: 10.1002/(ISSN)1521-4095

    6. [6]

      Becker N., Oroudjev E., Mutz S.. Molecular nanosprings in spider capture-silk threads[J]. Nat.Mater., 2003,2:278-283. doi: 10.1038/nmat858

    7. [7]

      Zheng Y.M., Bai H., Huang Z.B.. Directional water collection on wetted spider silk[J]. Nature, 2010,463:640-643. doi: 10.1038/nature08729

    8. [8]

      Liu Y., Shao Z.Z., Vollrath F.. Relationships between supercontraction and mechanical properties of spider silk[J]. Nat.Mater., 2005,4:901-905. doi: 10.1038/nmat1534

    9. [9]

      Cai Y., Lin L., Xue Z.X.. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Adv.Funct.Mater., 2014,24:809-816. doi: 10.1002/adfm.201302034

    10. [10]

      Chen P.-Y., Lin A.Y.-M., McKittrick J., Meyers M.A.. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomater., 2008,4:587-596. doi: 10.1016/j.actbio.2007.12.010

    11. [11]

      Rhee H., Horstemeyer M.F., Hwang Y.. A study on the structure and mechanical behavior of the Terrapene carolina carapace:a pathway to design bio-inspired synthetic composites[J]. Mater.Sci.Eng.C, 2009,29:2333-2339. doi: 10.1016/j.msec.2009.06.002

    12. [12]

      Chen I.H., Kiang J.H., Correa V.. Armadillo armor:mechanical testing and micro-structural evaluation[J]. J.Mech.Behav.Biomed.Mater., 2011,4:713-722. doi: 10.1016/j.jmbbm.2010.12.013

    13. [13]

      Yang W., Chen I.H., Gludovatz B.. Natural fiexible dermal armor[J]. Adv. Mater., 2013,25:31-48. doi: 10.1002/adma.201202713

    14. [14]

      Liu K.S., Tian Y., Jiang L.. Bio-inspired superoleophobic and smart materials: design, fabrication, and application[J]. Prog.Mater.Sci., 2013,58:503-564. doi: 10.1016/j.pmatsci.2012.11.001

    15. [15]

      Wang S.T., Liu K.S., Yao X., Jiang L.. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chem.Rev., 2015,115:8230-8293. doi: 10.1021/cr400083y

    16. [16]

      Li Y.F., Zhang J.H., Yang B.. Antire flective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 2010,5:117-127. doi: 10.1016/j.nantod.2010.03.001

    17. [17]

      Nie Z.H., Kumacheva E.. Patterning surfaces with functional polymers[J]. Nat. Mater., 2008,7:277-290. doi: 10.1038/nmat2109

    18. [18]

      Han H., Huang Z.P., Lee W.. Metal-assisted chemical etching of silicon and nanotechnology applications[J]. Nano Today, 2014,9:271-304. doi: 10.1016/j.nantod.2014.04.013

    19. [19]

      del Campo A., Arzt E.. Fabrication approaches for generating complex micro-and nanopatterns on polymeric surfaces[J]. Chem.Rev., 2008,108:911-945. doi: 10.1021/cr050018y

    20. [20]

      Zhang J.H., Li Y.F., Zhang X.M., Yang B.. Colloidal self-assembly meets nanofabrication:from two-dimensional colloidal crystals to nanostructure arrays[J]. Adv.Mater., 2010,22:4249-4269. doi: 10.1002/adma.201000755

    21. [21]

      Zhang J.H., Yang B.. Patterning colloidal crystals and nanostructure arrays by soft lithography[J]. Adv.Funct.Mater., 2010,20:3411-3424. doi: 10.1002/adfm.v20:20

    22. [22]

      Ogaki R., Alexander M., Kingshott P.. Chemical patterning in biointerface science[J]. Mater.Today, 2010,13:22-35.  

    23. [23]

      T.Blättler , Huwiler C., Ochsner M.. Nanopatterns with biological functions[J]. J.Nanosci.Nanotechnol., 2006,6:2237-2264. doi: 10.1166/jnn.2006.501

    24. [24]

      Chow D.C., Johannes M.S., Lee W.-K.. Nanofabrication with biomolecules[J]. Mater.Today, 2005,8:30-39.  

    25. [25]

      Christman K.L., Enriquez-Rios V.D., Maynard H.D.. Nanopatterning proteins and peptides[J]. Soft Matter, 2006,2:928-939. doi: 10.1039/b611000b

    26. [26]

      Ganesan R., Kratz K., Lendlein A.. Multicomponent protein patterning of material surfaces[J]. J.Mater.Chem., 2010,20:7322-7331. doi: 10.1039/b926690a

    27. [27]

      Derby B.. Printing and prototyping of tissues and scaffolds[J]. Science, 2012,338:921-926. doi: 10.1126/science.1226340

    28. [28]

      Srimongkon T., Mandai S., Enomae T.. Application of biomaterials and inkjet printing to develop bacterial culture system[J]. Adv.Mater.Sci.Eng., 2015,2015290790.  

    29. [29]

      Liu W.D., Li Y.F., Yang B.. Fabrication and applications of the protein patterns[J]. Sci.China Chem., 2013,56:1087-1100.  

    30. [30]

      J.El-Ali , Sorger P.K., Jensen K.F.. Cells on chips[J]. Nature, 2006,442:403-411. doi: 10.1038/nature05063

    31. [31]

      Solak H.H., David C., Gobrecht J.. Sub-50 nm period patterns with EUV interference lithography[J]. Microelectron.Eng.67-, 2003,68:56-62.  

    32. [32]

      Pavli P., Petrou P.S., Douvas A.M.. Protein-resistant cross-linked poly (vinyl alcohol)micropatterns via photolithography using removable polyoxometalate photocatalyst[J]. ACS Appl.Mater.Interfaces, 2014,6:17463-17473. doi: 10.1021/am5053224

    33. [33]

      Chen Z.J., He S.Q., Butt H.-J., Wu S.. Photon upconversion lithography: patterning of biomaterials using near-infrared light[J]. Adv.Mater., 2015,27:2203-2206. doi: 10.1002/adma.201405933

    34. [34]

      Waldbaur A., Waterkotte B., Schmitz K., Rapp B.E.. Maskless projection lithography for the fast and flexible generation of grayscale protein patterns[J]. Small, 2012,8:1570-1578. doi: 10.1002/smll.v8.10

    35. [35]

      Reuther C., Tucker R., Ionov L., Diez S.. Programmable patterning of protein bioactivity by visible light[J]. Nano Lett., 2014,14:4050-4057. doi: 10.1021/nl501521q

    36. [36]

      Shiu J.-Y., Chen P.L.. Addressable protein patterning via switchable superhydrophobic microarrays[J]. Adv.Funct.Mater., 2007,17:2680-2686. doi: 10.1002/(ISSN)1616-3028

    37. [37]

      Dubey M., Emoto K., Takahashi H., Castner D.G., Grainger D.W.. A ffinity-based protein surface pattern formation by ligand self-selection from mixed protein solutions[J]. Adv.Funct.Mater., 2009,19:3046-3055. doi: 10.1002/adfm.v19:19

    38. [38]

      Falconner D., Koenig A., Assi F., Textor M.. A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences[J]. Adv.Funct.Mater., 2004,14:749-756. doi: 10.1002/(ISSN)1616-3028

    39. [39]

      Zhang G.M., Surwade S.P., Zhou F., Liu H.T.. DNA nanostructure meets nanofabrication[J]. Chem.Soc.Rev., 2013,42:2488-2496. doi: 10.1039/C2CS35302D

    40. [40]

      Wang D.H., Ha Y., Gu J.. 2D protein supramolecular nano film with exceptionally large area and emergent functions[J]. Adv.Mater., 2016.  

    41. [41]

      Valsesia A., Colpo P., Meziani T.. Selective immobilization of protein clusters on polymeric nanocraters[J]. Adv.Funct.Mater., 2006,16:1242-1246. doi: 10.1002/(ISSN)1616-3028

    42. [42]

      T.M.Blättler , Binkert A., Zimmermann M.. From particle self-assembly to functionalized sub-micron protein patterns[J]. Nanotechnology, 2008,19075301. doi: 10.1088/0957-4484/19/7/075301

    43. [43]

      Wang P.-Y., Bennetsen D.T., Foss M.. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition[J]. ACS Appl.Mater.Interfaces, 2015,7:4979-4989. doi: 10.1021/acsami.5b00107

    44. [44]

      Singh G., Griesser H.J., Bremmell K., Kingshott P.. Highly ordered nanometer-scale chemical and protein patterns by binary colloidal crystal lithography combined with plasma polymerization[J]. Adv.Funct.Mater, 2011,21:540-546. doi: 10.1002/adfm.v21.3

    45. [45]

      Li Y.F., Zhang J.H., Fang L.P.. Polymer brush nanopatterns with controllable features for protein pattern applications[J]. J.Mater.Chem., 2012,22:25116-25122. doi: 10.1039/c2jm35197h

    46. [46]

      Liu W.D., Li Y.F., Wang T.Q.. Elliptical polymer brush ring array mediated protein patterning and cell adhesion on patterned protein surfaces[J]. ACS Appl. Mater.Interfaces, 2013,5:12587-12593. doi: 10.1021/am403808s

    47. [47]

      Liu W.D., Liu X.Y., Ge P.. Hierarchical-multiplex DNA patterns mediated by polymer brush nanocone arrays that possess potential application for specific DNA sensing[J]. ACS Appl.Mater.Interfaces, 2015,7:24760-24771. doi: 10.1021/acsami.5b07577

    48. [48]

      Li Y.F., Zhang J.H., Liu W.D.. Hierarchical polymer brush nanoarrays:a versatile way to prepare multiscale patterns of proteins[J]. ACS Appl.Mater. Interfaces, 2013,5:2126-2132. doi: 10.1021/am3031757

    49. [49]

      Xia Y.N., Whitesides G.M.. Soft lithography[J]. Annu.Rev.Mater.Sci., 1998,28:153-184. doi: 10.1146/annurev.matsci.28.1.153

    50. [50]

      Hoff J.D., Cheng L.-J., E.Meyhöfer , Guo L.J., Hunt A.J.. Nanoscale protein patterning by imprint lithography[J]. Nano Lett., 2004,4:853-857. doi: 10.1021/nl049758x

    51. [51]

      Seo S., Lee J., Kim K.-S.. Anisotropic adhesion of micropillars with spatula pads[J]. ACS Appl.Mater.Interfaces, 2014,6:1345-1350. doi: 10.1021/am4044135

    52. [52]

      Lebib A., Chen Y., Bourneix J.. Nanoimprint lithography for a large area pattern replication[J]. Microelectron.Eng., 1999,46:319-322. doi: 10.1016/S0167-9317(99)00094-5

    53. [53]

      Tsioris K., Tao H., Liu M.K.. Rapid transfer-based micropatterning and dry etching of silk microstructures[J]. Adv.Mater., 2011,23:2015-2019. doi: 10.1002/adma.201004771

    54. [54]

      Guo L.J., Cheng X., Chou C.-F.. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching[J]. Nano Lett., 2004,4:69-73. doi: 10.1021/nl034877i

    55. [55]

      Yim E.K.F., Reano R.M., Pang S.W.. Nanopattern-induced changes in morphology and motility of smooth muscle cells[J]. Biomaterials, 2005,26:5405-5413. doi: 10.1016/j.biomaterials.2005.01.058

    56. [56]

      Kolodziej C.M., Kim S.H., Broyer R.M.. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns[J]. J.Am.Chem.Soc., 2012,134:247-255. doi: 10.1021/ja205524x

    57. [57]

      Broers A.N., Hoole A.C.F., Ryan J.M.. Electron beam lithography-resolution limits[J]. Microelectron.Eng., 1996,32:131-142. doi: 10.1016/0167-9317(95)00368-1

    58. [58]

      Kolodziej C.M., Maynard H.D.. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale[J]. Chem.Mater., 2012,24:774-780. doi: 10.1021/cm202669f

    59. [59]

      Christman K.L., Schopf E., Broyer R.M.. Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers[J]. J.Am. Chem.Soc., 2009,131:521-527. doi: 10.1021/ja804767j

    60. [60]

      Christman K.L., Vázquez-Dorbatt V., Schopf E.. Nanoscale growth factor patterns by immobilization on a heparin-mimicking polymer[J]. J.Am.Chem. Soc., 2008,130:16585-16591. doi: 10.1021/ja803676r

    61. [61]

      Schlapak R., Danzberger J., Haselgrübler T.. Painting with biomolecules at the nanoscale:biofunctionalization with tunable surface densities[J]. Nano Lett., 2012,12:1983-1989. doi: 10.1021/nl2045414

    62. [62]

      Bat E., Lee J., Lau U.Y., Maynard H.D.. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography[J]. Nat. Commun., 2015,66654. doi: 10.1038/ncomms7654

    63. [63]

      Kim S., Marelli B., Brenckle M.A.. All-water-based electron-beam lithography using silk as a resist[J]. Nat.Nanotechnol., 2014,9:306-310. doi: 10.1038/nnano.2014.47

    64. [64]

      Feng C.L., Embrechts A., Bredebusch I.. Reactive microcontact printing on block copolymer films:exploiting chemistry in microcontacts for sub-micrometer patterning of biomolecules[J]. Adv.Mater., 2007,19:286-290. doi: 10.1002/(ISSN)1521-4095

    65. [65]

      Strulson M.K., Maurer J.A.. Microcontact printing for creation of patterned lipid bilayers on tetraethylene glycol self-assembled monolayers[J]. Langmuir, 2011,27:12052-12057. doi: 10.1021/la201839w

    66. [66]

      Feng C.L., Vancso G.J.. H.Schönherr, Fabrication of robust biomolecular patterns by reactive microcontact printing on N-hydroxysuccinimide ester-containing polymer films[J]. Adv.Funct.Mater., 2006,16:1306-1312. doi: 10.1002/(ISSN)1616-3028

    67. [67]

      Kumar A., Whitesides G.M.. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching[J]. Appl. Phys.Lett., 1993,63:2002-2004. doi: 10.1063/1.110628

    68. [68]

      Renault J.P., Bernard A., Bietsch A.. Fabricating arrays of single protein molecules on glass using microcontact printing[J]. J.Phys.Chem.B, 2003,107:703-711. doi: 10.1021/jp0263424

    69. [69]

      Jang M.J., Nam Y.. Aqueous micro-contact printing of cell-adhesive biomolecules for patterning neuronal cell cultures[J]. BioChip J., 2012,6:107-113. doi: 10.1007/s13206-012-6201-9

    70. [70]

      Bernard A., Renault J.P., Michel B.. Microcontact printing of proteins[J]. Adv.Mater., 2000,12:1067-1070. doi: 10.1002/(ISSN)1521-4095

    71. [71]

      Piner R.D., Zhu J., Xu F., Hong S.H., Mirkin C.A.. Dip-pen nanolithography[J]. Science, 1999,283:661-663. doi: 10.1126/science.283.5402.661

    72. [72]

      Wu C.-C., Reinhoudt D.N., Otto C., Subramaniam V., Velders A.H.. Strategies for patterning biomolecules with dip-pen nanolithography[J]. Small, 2011,7:989-1002. doi: 10.1002/smll.201001749

    73. [73]

      Salazar R.B., Shovsky A., Schänherr H., Vancso G.J.. Dip-pen nanolithography on(bio)reactive monolayer and block-copolymer platforms:deposition of lines of single macromolecules[J]. Small, 2006,2:1274-1282. doi: 10.1002/(ISSN)1613-6829

    74. [74]

      Garcia R., Knoll A.W., Riedo E.. Advanced scanning probe lithography[J]. Nat. Nanotechnol., 2014,9:577-587. doi: 10.1038/nnano.2014.157

    75. [75]

      Hong S., Zhu J., Mirkin C.A.. Multiple ink nanolithography:toward a multiple-pen nano-plotter[J]. Science, 1999,286:523-525. doi: 10.1126/science.286.5439.523

    76. [76]

      Mirkin C.A.. The power of the pen:development of massively parallel dip-pen nanolithography[J]. ACS Nano, 2007,1:79-83. doi: 10.1021/nn700228m

    77. [77]

      Salaita K., Lee S.W., Wang X.F.. Sub-100 nm centimeter-scale, parallel dip-pen nanolithography[J]. Small, 2005,1:940-945. doi: 10.1002/(ISSN)1613-6829

    78. [78]

      Salaita K., Wang Y.H., Fragala J.. Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays[J]. Angew.Chem. Int.Ed., 2006,45:7220-7223. doi: 10.1002/(ISSN)1521-3773

    79. [79]

      Lee K.-B., Park S.-J., Mirkin C.A., Smith J.C., Mrksich M.. Protein nanoarrays generated by dip-pen nanolithography[J]. Science, 2002,295:1702-1705. doi: 10.1126/science.1067172

    80. [80]

      Hong S., Mirkin C.A.. A nanoplotter with both parallel and serial writing capabilities[J]. Science, 2000,288:1808-1811. doi: 10.1126/science.288.5472.1808

    81. [81]

      Zheng Z.J., Daniel W.L., Giam L.R.. Multiplexed protein arrays enabled by polymer pen lithography:addressing the inking challenge[J]. Angew.Chem.Int. Ed., 2009,121:7762-7765. doi: 10.1002/ange.v121:41

    82. [82]

      Lenhert S., Sun P., Wang Y.H., Fuchs H., Mirkin C.A.. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns[J]. Small, 2007,3:71-75. doi: 10.1002/(ISSN)1613-6829

    83. [83]

      Lim J.-H., Mirkin C.A.. Electrostatically driven dip-pen nanolithography of conducting polymers[J]. Adv.Mater., 2002,14:1474-1477. doi: 10.1002/1521-4095(20021016)14:20 & lt; 1474::AID-ADMA1474 & gt; 3.0.CO; 2-2

    84. [84]

      Senesi A.J., Rozkiewicz D.I., Reinhoudt D.N., Mirkin C.A.. Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins[J]. ACS Nano, 2009,3:2394-2402. doi: 10.1021/nn9005945

    85. [85]

      Fais M., Karamanska R., Russell D.A., Field R.A.. Lectin and carbohydrate microarrays:new high-throughput methods for glycoprotein carbohydrate-binding protein and carbohydrate-active enzyme analysis[J]. J.Cereal Sci., 2009,50:306-311. doi: 10.1016/j.jcs.2009.06.010

    86. [86]

      Kong H., Liu D., Zhang S.C., Zhang X.R.. Protein sensing and cell discrimination using a sensor array based on nanomaterial-assisted chemiluminescence[J]. Anal.Chem., 2011,83:1867-1870. doi: 10.1021/ac200076c

    87. [87]

      Chang G., Mori Y., Mori S.. Microarray of human P450 with an integrated oxygen sensing film for high-throughput detection of metabolic activities[J]. Anal.Chem., 2012,84:5292-5297. doi: 10.1021/ac300355w

    88. [88]

      Baldini L., Wilson A.J., Hong J., Hamilton A.D.. Pattern-based detection of different proteins using an array of fluorescent protein surface receptors[J]. J. Am.Chem.Soc., 2004,126:5656-5657. doi: 10.1021/ja039562j

    89. [89]

      Liu Y.S., Hu W.H., Lu Z.S., Li C.M. ZnO nanomulberry and its significant nonenzymatic signal enhancement for protein microarray[J]. ACS Appl.Mater. Interfaces, 2014,6:7728-7734. doi: 10.1021/am501015p

    90. [90]

      Zhao Y.J., Zhao X.W., Pei X.P.. Multiplex detection of tumor markers with photonic suspension array[J]. Anal.Chim.Acta, 2009,633:103-108. doi: 10.1016/j.aca.2008.11.035

    91. [91]

      Song S.Y., Han Y.D., Hong S.Y.. Chip-based cartilage oligomeric matrix protein detection in serum and synovialfluid for osteoarthritis diagnosis[J]. Anal.Biochem., 2012,420:139-146. doi: 10.1016/j.ab.2011.09.012

    92. [92]

      Zhu Q.D., Trau D.. Multiplex detection platform for tumor markers and glucose in serum based on a microfluidic microparticle array[J]. Anal.Chim. Acta, 2012,751:146-154. doi: 10.1016/j.aca.2012.09.007

    93. [93]

      Jagt R.B.C., Gémez-Biagi R.F., Nitz M.. Pattern-based recognition of heparin contaminants by an array of self-assembling fluorescent receptors[J]. Angew. Chem.Int.Ed., 2009,48:1995-1997. doi: 10.1002/anie.v48:11

    94. [94]

      Wang D.N.. Carbohydrate microarrays[J]. Proteomics, 2003,3:2167-2175. doi: 10.1002/(ISSN)1615-9861

    95. [95]

      Im H., Bantz K.C., Lee S.H.. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing[J]. Adv.Mater., 2013,25:2678-2685. doi: 10.1002/adma.v25.19

    96. [96]

      Li X.N., Wen F., Creran B.. Colorimetric protein sensing using catalytically amplified sensor arrays[J]. Small, 2012,8:3589-3592. doi: 10.1002/smll.v8.23

    97. [97]

      Chang M.-J., Pang C.-R., Liu J.. High spatial resolution label-free detection of antigen-antibody binding on patterned surface by imaging ellipsometry[J]. J.Colloid Interface Sci., 2011,360:826-833. doi: 10.1016/j.jcis.2011.04.107

    98. [98]

      Wu Z.F., Yang P.. Simple multipurpose surface functionalization by phase transited protein adhesion[J]. Adv.Mater.Interfaces, 2015,21400401. doi: 10.1002/admi.201400401

    99. [99]

      Linman M.J., Yu H., Chen X., Cheng Q.. Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging[J]. ACS Appl.Mater. Interfaces, 2009,1:1755-1762. doi: 10.1021/am900290g

    100. [100]

      Son K.J., Kim S., Kim J.-H.. Dendrimer porphyrin-terminated polyelectrolyte multilayer micropatterns for a protein microarray with enhanced sensitivity[J]. J.Mater.Chem., 2010,20:6531-6538. doi: 10.1039/c0jm00498g

    101. [101]

      Nam K., Eom K., Yang J.. Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection[J]. J.Mater.Chem., 2012,22:23348-23356. doi: 10.1039/c2jm33688j

    102. [102]

      Wang H., Xu Q.H., Shang L.R.. Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays[J]. Chem.Commun., 2016,52:3296-3299. doi: 10.1039/C5CC09371F

    103. [103]

      Walt D.R.. Protein measurements in microwells[J]. Lab Chip, 2014,14:3195-3200. doi: 10.1039/C4LC00277F

    104. [104]

      Lu W.B., Fu C., Chen Y.. Multiplex detection of B-type natriuretic peptide, cardiac troponin I and C-reactive protein with photonic suspension array[J]. PLoS One, 2012,7e41448. doi: 10.1371/journal.pone.0041448

    105. [105]

      Zhou H.C., Baldini L., Hong J., Wilson A.J., Hamilton A.D.. Pattern recognition of proteins based on an array of functionalized porphyrins[J]. J.Am.Chem.Soc., 2006,128:2421-2425. doi: 10.1021/ja056833c

    106. [106]

      Morales-Narváez E., Guix M., Medina-Sánchez M., Mayorga-Martinez C.C., Merkoći A.. Micromotor enhanced microarray technology for protein detection[J]. Small, 2014,10:2542-2548. doi: 10.1002/smll.v10.13

    107. [107]

      Mu Z.D., Zhao X.W., Huang Y., Lu M., Gu Z.Z.. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis[J]. Small, 2015,11:6036-6043. doi: 10.1002/smll.201501829

    108. [108]

      Yuan J.J., Zhao X.W., Wang X.X., Gu Z.Z.. Image decoding of photonic crystal beads array in the microfluidic chip for multiplex assays[J]. Sci.Rep., 2014,46755.  

    109. [109]

      Gaster R.S., Hall D.A., Wang S.X. Autoassembly protein arrays for analyzing antibody cross-reactivity[J]. Nano Lett., 2011,11:2579-2583. doi: 10.1021/nl1026056

    110. [110]

      Zhang X.M., Li Z.B., Ye S.S.. Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission[J]. J.Mater.Chem., 2012,22:8903-8910. doi: 10.1039/c2jm30525a

    111. [111]

      Ye S.S., Zhang X.M., Chang L.X.. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals[J]. Adv.Opt.Mater., 2014,2:779-787. doi: 10.1002/adom.v2.8

    112. [112]

      Lau U.Y., Saxer S.S., Lee J., Bat E., Maynard H.D.. Direct write protein patterns for multiplexed cytokine detection from live cells using electron beam lithography[J]. ACS Nano, 2016,10:723-729. doi: 10.1021/acsnano.5b05781

    113. [113]

      Hu W.H., Liu Y.S., Lu Z.S., Li C.M.. Poly[J]. Adv.Funct.Mater., 2010,20:3497-3503. doi: 10.1002/adfm.v20:20

    114. [114]

      Duan R.X., Zuo X.L., Wang S.T.. Lab in a tube:ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification[J]. J.Am.Chem.Soc., 2013,135:4604-4607. doi: 10.1021/ja311313b

    115. [115]

      Schlapak R., Danzberger J., Armitage D.. Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces[J]. Small, 2012,8:89-97. doi: 10.1002/smll.201101576

    116. [116]

      Zhao Y.J., Zhao X.W., Tang B.C.. Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection[J]. Adv.Funct. Mater., 2010,20:976-982. doi: 10.1002/adfm.200901812

    117. [117]

      Bajaj A., Miranda O.R., Phillips R.. Array-based sensing of normal cancerous, and metastatic cells using conjugated fluorescent polymers[J]. J.Am. Chem.Soc., 2010,132:1018-1022. doi: 10.1021/ja9061272

    118. [118]

      Siltanen C., Shin D.-S., Sutcliffe J.. Revzin A.Micropatterned photodegradable hydrogels for the sorting of microbeads and cells[J]. Angew.Chem.Int.Ed., 2013,52:9224-9228. doi: 10.1002/anie.201303965

    119. [119]

      Toccafondi C., Thorat S., R.La Rocca. Multifunctional substrates of thin porous alumina for cell biosensors[J]. J.Mater.Sci.:Mater.Med., 2014,25:2411-2420.  

    120. [120]

      Wang S.T., Wang H., Jiao J.J.. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells[J]. Angew.Chem. Int.Ed., 2009,121:9132-9135. doi: 10.1002/ange.v121:47

    121. [121]

      Lin M., Chen J.-F., Lu Y.-T.. Nanostructure embedded microchips for detection isolation, and characterization of circulating tumor cells[J]. Acc. Chem.Res., 2014,47:2941-2950. doi: 10.1021/ar5001617

    122. [122]

      Amin Y.Y.I., Runager K., Simoes F.. Combinatorial biomolecular nanopatterning for high-throughput screening of stem-cell behavior[J]. Adv. Mater., 2016,28:1472-1476. doi: 10.1002/adma.v28.7

    123. [123]

      Zhao S., Zhao H., Zhang X.Y., Li Y.Q., Du Y.. Off-the-shelf microsponge arrays for facile and efficient construction of miniaturized 3D cellular microenvironments for versatile cell-based assays[J]. Lab Chip, 2013,13:2350-2358. doi: 10.1039/c3lc50183c

    124. [124]

      Zhang B., Cai Y.L., Shang L.R.. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood[J]. Nanoscale, 2016,8:3841-3847. doi: 10.1039/C5NR06368J

    125. [125]

      Jin J., Xing Y., Xi Y.. A triggered DNA hydrogel cover to envelop and release single cells[J]. Adv.Mater., 2013,25:4714-4717. doi: 10.1002/adma.v25.34

    126. [126]

      Kumashiro Y., Ishihara J., Umemoto T.. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling[J]. Small, 2015,11:681-687. doi: 10.1002/smll.201400787

    127. [127]

      Chen L., Liu X.L., Su B.. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces[J]. Adv.Mater., 2011,23:4376-4380. doi: 10.1002/adma.201102435

    128. [128]

      Zhang F.L., Jiang Y., Liu X.L.. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells[J]. Nano Lett., 2016,16:766-772. doi: 10.1021/acs.nanolett.5b04731

    129. [129]

      Hsiao Y.-S., Luo S.-C., Hou S.. 3D bioelectronic interface:capturing circulating tumor cells onto conducting polymer-based micro/nanorod arrays with chemical and topographical control[J]. Small, 2014,10:3012-3017. doi: 10.1002/smll.v10.15

    130. [130]

      Custódio C.A., San Miguel-Arranz V., Gropeanu R.A.. Photopatterned antibodies for selective cell attachment[J]. Langmuir, 2014,30:10066-10071. doi: 10.1021/la502688h

    131. [131]

      Meng J.X., Zhang P.C., Zhang F.L.. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection[J]. ACS Nano, 2015,9:9284-9291. doi: 10.1021/acsnano.5b04230

    132. [132]

      Liu X.L., Wang S.T.. Three-dimensional nano-biointerface as a new platform for guiding cell fate[J]. Chem.Soc.Rev., 2014,43:2385-2401. doi: 10.1039/c3cs60419e

    133. [133]

      Ye X.Z., Qi L.M.. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals:controllable fabrication, assembly, and applications[J]. Nano Today, 2011,6:608-631. doi: 10.1016/j.nantod.2011.10.002

    134. [134]

      Shao Y., Sang J.M., Fu J.P.. On human pluripotent stem cell control:the rise of 3D bioengineering and mechanobiology[J]. Biomaterials, 2015,52:26-43. doi: 10.1016/j.biomaterials.2015.01.078

    135. [135]

      Khan F., Tanaka M., Ahmad S.R.. Fabrication of polymeric biomaterials:a strategy for tissue engineering and medical devices[J]. J.Mater.Chem.B, 2015,3:8224-8249. doi: 10.1039/C5TB01370D

    136. [136]

      Phong H.Q., Wang S.-L., Wang M.-J.. Cell behaviors on micro-patterned porous thin films[J]. Mater.Sci.Eng.B, 2010,169:94-100. doi: 10.1016/j.mseb.2010.01.009

    137. [137]

      Skorb E.V., Andreeva D.V.. Surface nanoarchitecture for bio-applications: self-regulating intelligent interfaces[J]. Adv.Funct.Mater., 2013,23:4483-4506. doi: 10.1002/adfm.v23.36

    138. [138]

      Zhang Y., Gordon A., Qian W.Y., Chen W.Q. Engineering nanoscale stem cell niche:direct stem cell behavior at cell-matrix interface[J]. Adv.Healthc.Mater., 2015,4:1900-1914. doi: 10.1002/adhm.201500351

    139. [139]

      Kim H.N., Jiao A., Hwang N.S.. Nanotopography-guided tissue engineering and regenerative medicine[J]. Adv.Drug Deliv.Rev., 2013,65:536-558. doi: 10.1016/j.addr.2012.07.014

    140. [140]

      Schwarz U.S., Nelson C.M., Silberzan P.. Proteins, cells, and tissues in patterned environments[J]. Soft Matter, 2014,10:2337-2340. doi: 10.1039/c4sm90028f

    141. [141]

      Chen S.S., Lu X.M., Hu Y., Lu Q.H.. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold[J]. Biomater.Sci., 2015,3:85-93. doi: 10.1039/C4BM00233D

    142. [142]

      Premnath P., Tavangar A., Tan B., Venkatakrishnan K.. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns[J]. Exp.Cell Res., 2015,337:44-52. doi: 10.1016/j.yexcr.2015.07.028

    143. [143]

      Meng F.W., Hlady V., Tresco P.A. Inducing alignment in astrocyte tissue constructs by surface ligands patterned on biomaterials[J]. Biomaterials, 2012,33:1323-1335. doi: 10.1016/j.biomaterials.2011.10.034

    144. [144]

      Bae W.-G., Kim J., Choung Y.-H.. Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells[J]. Biomaterials, 2015,69:158-164. doi: 10.1016/j.biomaterials.2015.08.006

    145. [145]

      Subramani C., Saha K., Creran B.. Cell alignment using patterned biocompatible gold nanoparticle templates[J]. Small, 2012,8:1209-1213. doi: 10.1002/smll.201102405

    146. [146]

      Zhou X.T., Shi J., Zhang F.. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces[J]. Lab Chip, 2010,10:1182-1188. doi: 10.1039/b926325j

    147. [147]

      van Hoorn H., Harkes R., Spiesz E.M.. The nanoscale architecture of force-bearing focal adhesions[J]. Nano Lett., 2014,14:4257-4262. doi: 10.1021/nl5008773

    148. [148]

      Gautrot J.E., Trappmann B., Oceguera-Yanez F.. Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarisation at the micron scale[J]. Biomaterials, 2010,31:5030-5041. doi: 10.1016/j.biomaterials.2010.02.066

    149. [149]

      Théry M., Racine V., Piel M.. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity[J]. Proc.Natl.Acad.Sci.U.S.A., 2006,103:19771-19776. doi: 10.1073/pnas.0609267103

    150. [150]

      Zhang J.-T., Nie J.Q., Mühlstädt M.. Stable extracellular matrix protein patterns guide the orientation of osteoblast-like cells[J]. Adv.Funct.Mater., 21,2011:4079-4087.  

    151. [151]

      Jiang X.Y., Bruzewicz D.A., Wong A.P., Piel M., Whitesides G.M.. Directing cell migration with asymmetric micropatterns[J]. Proc.Natl.Acad.Sci.U.S.A., 2005,102:975-978. doi: 10.1073/pnas.0408954102

    152. [152]

      Kim D.-H., Seo C.-H., Han K.. Guided cell migration on microtextured substrates with variable local density and anisotropy[J]. Adv.Funct.Mater., 2009,19:1579-1586. doi: 10.1002/adfm.v19:10

    153. [153]

      Kim D.-H., Han K., Gupta K.. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients[J]. Biomaterials, 2009,30:5433-5444. doi: 10.1016/j.biomaterials.2009.06.042

    154. [154]

      Tseng P., Carlo D.D.. Substrates with patterned extracellular matrix and subcellular stiffness gradients reveal local biomechanical responses[J]. Adv. Mater., 2014,26:1242-1247. doi: 10.1002/adma.v26.8

    155. [155]

      Li Y., Jiang X.Q., Zhong H.X.. Hierarchical patterning of cells with a microeraser and electrospun nanofibers[J]. Small, 2016,12:1230-1239. doi: 10.1002/smll.v12.9

    156. [156]

      Benson K., Prasetyanto E.A., Galla H.-J., Kehr N.S.. Self-assembled monolayers of bifunctional periodic mesoporous organosilicas for cell adhesion and cellular patterning[J]. Soft Matter, 2012,8:10845-10852. doi: 10.1039/c2sm26563j

    157. [157]

      Jang J.-W., Collins J.M., Nettikadan S.. User-friendly universal and durable subcellular-scaled template for protein binding:application to single-cell patterning[J]. Adv.Funct.Mater., 2013,23:5840-5845. doi: 10.1002/adfm.v23.47

    158. [158]

      You J., Yoshida A., Heo J.S.. Protein coverage on polymer nanolayers leading to mesenchymal stem cell patterning[J]. Phys.Chem.Chem.Phys., 2011,13:17625-17632. doi: 10.1039/c1cp21732a

    159. [159]

      Matsui T., Arima Y., Takemoto N., Iwata H.. Cell patterning on polylactic acid through surface-tethered oligonucleotides[J]. Acta Biomater., 2015,13:32-41. doi: 10.1016/j.actbio.2014.11.011

    160. [160]

      Seo H., Choi I., Lee J.. Facile method for development of ligand-patterned substrates induced by a chemical reaction[J]. Chem.Eur.J., 2011,17:5804-5807. doi: 10.1002/chem.v17.21

    161. [161]

      Li B.Q., Wang L., Xu F.. UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo[J]. Acta Biomater., 2015,22:59-69. doi: 10.1016/j.actbio.2015.04.026

    162. [162]

      Fisher O.Z., Khademhosseini A., Langer R., Peppas N.A.. Bioinspired materials for controlling stem cell fate[J]. Acc.Chem.Res., 2010,43:419-428. doi: 10.1021/ar900226q

    163. [163]

      Xin H.B., Li Y.C., Li B.J. Controllable patterning of different cells via optical assembly of 1D periodic cell structures[J]. Adv.Funct.Mater., 2015,25:2816-2823. doi: 10.1002/adfm.201500287

    164. [164]

      Tuft B.W., Zhang L.C., Xu L.J.. Material stiffness effects on neurite alignment to photopolymerized micropatterns[J]. Biomacromolecules, 2014,15:3717-3727. doi: 10.1021/bm501019s

    165. [165]

      Yang K., Jung H., Lee H.-R.. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons[J]. ACS Nano, 2014,8:7809-7822. doi: 10.1021/nn501182f

    166. [166]

      Swarup V.P., Hsiao T.W., Zhang J.X.. Exploiting differential surface display of chondroitin sulfate variants for directing neuronal outgrowth[J]. J. Am.Chem.Soc., 2013,135:13488-13494. doi: 10.1021/ja4056728

    167. [167]

      Tuft B.W., Xu L.J., White S.P.. Neural pathfinding on uni-and multidirectional photopolymerized micropatterns[J]. ACS Appl.Mater. Interfaces, 2014,6:11265-11276. doi: 10.1021/am501622a

    168. [168]

      Jia C., Yu D., Lamarre M.. Patterned electrospun nanofiber matrices via localized dissolution:potential for guided tissue formation[J]. Adv.Mater., 2014,26:8192-8197. doi: 10.1002/adma.201403509

    169. [169]

      Wittenbrink I., Hausmann A., Schickle K.. Low-aspect ratio nanopatterns on bioinert alumina influence the response and morphology of osteoblast-like cells[J]. Biomaterials, 2015,62:58-65. doi: 10.1016/j.biomaterials.2015.05.026

    170. [170]

      Gong T., Lu L.X., Liu D.. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis[J]. J.Mater. Chem.B, 2015,3:9011-9022.  

    171. [171]

      Zhao C.C., Xia L.G., Zhai D.. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells[J]. J.Mater.Chem.B, 2015,3:968-976.  

    172. [172]

      Tien L.W., Gil E.S., Park S.-H., Mandal B.B., Kaplan D.L.. Patterned silk film scaffolds for aligned lamellar bone tissue engineering[J]. Macromol.Biosci., 2012,12:1671-1679. doi: 10.1002/mabi.201200193

    173. [173]

      Kim J., Bae W.-G., Lim K.-T.. Density of nanopatterned surfaces for designing bone tissue engineering scaffolds[J]. Mater.Lett., 2014,130:227-231. doi: 10.1016/j.matlet.2014.05.107

    174. [174]

      Marino A., Ciofani G., Filippeschi C.. Two-photon polymerization of sub-micrometric patterned surfaces:investigation of cell-substrate interactions and improved differentiation of neuron-like cells[J]. ACS Appl.Mater.Interfaces, 2013,5:13012-13021. doi: 10.1021/am403895k

    175. [175]

      Limongi T., Cesca F., Gentile F.. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks[J]. Small, 2013,9:402-412. doi: 10.1002/smll.201201377

    176. [176]

      Dalby M.J., Gadegaard N., Tare R.. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nat.Mater., 2007,6:997-1003. doi: 10.1038/nmat2013

    177. [177]

      Tserepi A., Gogolides E., Bourkoula A.. Plasma nanotextured polymeric surfaces for controlling cell attachment and proliferation:a short review[J]. Plasma Chem.Plasma Process., 2016,36:107-120. doi: 10.1007/s11090-015-9674-1

    178. [178]

      Bettinger C.J., Langer R., Borenstein J.T.. Engineering substrate topography at the micro-and nanoscale to control cell function[J]. Angew.Chem.Int.Ed., 2009,48:5406-5415. doi: 10.1002/anie.v48:30

    179. [179]

      Tay C.Y., Irvine S.A., Boey F.Y.C., Tan L.P., Venkatraman S.. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications[J]. Small, 2011,7:1361-1378. doi: 10.1002/smll.201100046

    180. [180]

      Zheng T., Peelen D., Smith L.M.. Lectin arrays for profiling cell surface carbohydrate expression[J]. J.Am.Chem.Soc., 2005,127:9982-9983. doi: 10.1021/ja0505550

    181. [181]

      Chen C.S., Mrksich M., Huang S., Whitesides G.M., Ingber D.E.. Geometric control of cell life and death[J]. Science, 1997,276:1425-1428. doi: 10.1126/science.276.5317.1425

    182. [182]

      Théry M., Racine V., Pépin A.. The extracellular matrix guides the orientation of the cell division axis[J]. Nat.Cell Biol., 2005,7:947-953. doi: 10.1038/ncb1307

    183. [183]

      Zhang P.C., Wang S.T.. Designing fractal nanostructured biointerfaces for biomedical applications[J]. ChemPhysChem, 2014,15:1550-1561. doi: 10.1002/cphc.201301230

    184. [184]

      Yan L., Yang Y., Zhang W.J., Chen X.F.. Advanced materials and nanotechnology for drug delivery[J]. Adv.Mater., 2014,26:5533-5540. doi: 10.1002/adma.201305683

    185. [185]

      Cahill D.J.. Protein and antibody arrays and their medical applications[J]. J. Immunol.Methods, 2001,250:81-91. doi: 10.1016/S0022-1759(01)00325-8

    186. [186]

      Chen X.F., Corbett H.J., Yukiko S.R.. Site-selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin[J]. Adv.Funct.Mater., 2011,21:464-473. doi: 10.1002/adfm.v21.3

    187. [187]

      Chen X.F., Zhu G.Y., Yang Y.. A diamond nanoneedle array for potential high-throughput intracellular delivery[J]. Adv.Healthc.Mater., 2013,2:1103-1107. doi: 10.1002/adhm.v2.8

    188. [188]

      DeMuth P.C., Min Y., Irvine D.J., Hammond P.T.. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization[J]. Adv.Healthc.Mater., 2014,3:47-58. doi: 10.1002/adhm.v3.1

    189. [189]

      Rasekh M., Ahmad Z., Day R., Wickham A., Edirisinghe M.. Direct writing of polycaprolactone polymer for potential biomedical engineering applications[J]. Adv.Eng.Mater., 2011,13:B296-B305. doi: 10.1002/adem.201080126

    190. [190]

      Liu W.D., Liu X.Y., Fangteng J.. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties[J]. Nanoscale, 2014,6:13845-13853. doi: 10.1039/C4NR04471A

    191. [191]

      Luz G.M., Boesel L., del Campo A., Mano J.F.. Micropatterning of bioactive glass nanoparticles on chitosan membranes for spatial controlled biomineralization[J]. Langmuir, 2012,28:6970-6977. doi: 10.1021/la300667g

    192. [192]

      You J., Shin D.-S., Patel D., Gao Y.D.. Revzin A.Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes[J]. Adv.Healthc.Mater., 2014,3:126-132. doi: 10.1002/adhm.v3.1

    193. [193]

      Sakimoto K.K., Liu C., Lim J., Yang P.D.. Salt-induced self-assembly of bacteria on nanowire arrays[J]. Nano Lett., 2014,14:5471-5476. doi: 10.1021/nl502946j

  • 加载中
    1. [1]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    2. [2]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    3. [3]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    4. [4]

      Meihui LiuXinyuan ZhouXiao LiZhenjie XueTie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875

    5. [5]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    6. [6]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    7. [7]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    8. [8]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    9. [9]

      Bingyang LuDehui WangJunchang GuoYang ShenQian FengJinlong YangXiao HanHuali YuLuohuizi LiJiaxin LiuJing LuoHuan LiuZhongwei ZhangXu Deng . High-efficiency exudates drainage of anti-adhesion dressings for chronic wound. Chinese Chemical Letters, 2025, 36(4): 110601-. doi: 10.1016/j.cclet.2024.110601

    10. [10]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    11. [11]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    12. [12]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    13. [13]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    14. [14]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    15. [15]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    18. [18]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    19. [19]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    20. [20]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

Metrics
  • PDF Downloads(1)
  • Abstract views(732)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return