Citation: M. Darjee Savan, D. Bhatt Keyur, S. Panchal Urvi, K. Jain Vinod. Scrupulous recognition of biologically important acids by fluorescent "turn off-on" mechanism of thaicalix reduced silver nanoparticles[J]. Chinese Chemical Letters, ;2017, 28(2): 312-318. doi: 10.1016/j.cclet.2016.07.026 shu

Scrupulous recognition of biologically important acids by fluorescent "turn off-on" mechanism of thaicalix reduced silver nanoparticles

  • Corresponding author: D. Bhatt Keyur, drkdbhatt@outlook.com
  • Received Date: 21 April 2016
    Revised Date: 2 July 2016
    Accepted Date: 13 July 2016
    Available Online: 24 February 2016

Figures(12)

  • Water dispersible silver nanoparticles (AgNps) were prepared using thiacalix[4]arene tetrahydrazide (TCTH) as a reducing and stabilizing agent. TCTH-AgNps were characterized by surface plasmon resonance (SPR), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). Relatively uniform 20 nm spherical particles of TCTH-AgNps were efficiently formed over a pH range of 5-9 and from 10-40℃. The interaction behavior of TCTH-AgNps with different amino acids was investigated using spectrophotometry and spectrofluorimetry. Among the amino acids tested, only tryptophan and histidine showed fluorescence quenching and fluorescence enhancement, respectively. The linear detection range by Stern-Volmer plot was 5 nmol/L to 0.48 μmol/L for tryptophan and 4 nmol/L to 0.54 μmol/L for histidine. TCTH-AgNps were able to effectively reduce the levels of gram-positive bacteria, gram-negative bacteria, and fungi. These properties argue for the potential use of TCTH-AgNps as detectors of histidine and tryptophan and as antibiotics.
  • 加载中
    1. [1]

      Y. Sun, L. Zhang, H.B. Li, Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters, New J. Chem. 36(2012) 1442-1444.

    2. [2]

      A. Ravindran, V. Mani, N. Chandrasekaran, A. Mukherjee. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr3+[J]. Talanta, 2011,85:533-540. doi: 10.1016/j.talanta.2011.04.031

    3. [3]

      K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour, Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles, Sens. Actuators B:Chem. 161(2012) 880-885.

    4. [4]

      H.B. Li, Z.M. Cui, C.P. Han. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion[J]. Sens. Actuators B:Chem., 2009,143:87-92. doi: 10.1016/j.snb.2009.09.013

    5. [5]

      N. Pradhan, A. Pal, T. Pal. Silver nanoparticle catalyzed reduction of aromatic nitro compounds[J]. Colloids Surf. A:Physicochem. Eng. Asp., 2002,196:247-257. doi: 10.1016/S0927-7757(01)01040-8

    6. [6]

      Q.L. Feng, J. Wu, G.Q. Chen. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. J. Biomed. Mater. Res., 2000,52:662-668. doi: 10.1002/(ISSN)1097-4636

    7. [7]

      A.B.G. Lansdown. Silver I:its antibacterial properties and mechanism of action[J]. J. Wound Care, 2002,11:125-130. doi: 10.12968/jowc.2002.11.4.26389

    8. [8]

      J.R. Morones, J.L. Elechiguerra, A. Camacho. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005,16:2346-2353. doi: 10.1088/0957-4484/16/10/059

    9. [9]

      I. Sondi, B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria[J]. J. Colloid Interface Sci., 2004,275:177-182. doi: 10.1016/j.jcis.2004.02.012

    10. [10]

      P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano 3(2009) 279-290.

    11. [11]

      G. Anjana, M. Gowri, C.S. Raja, et al., Silver nanoparticles as a non alcoholic hospital disinfectant to combat nosocomial pathogens, J. Bionanosc. 9(2015) 102-111.

    12. [12]

      B.A. Makwana, D.J. Vyas, K.D. Bhatt, S. Darji, V.K. Jain. Novel fluorescent silver nanoparticles:sensitive and selective turn off sensor for cadmium ions[J]. Appl. Nanosci., 2016,6:555-566. doi: 10.1007/s13204-015-0459-x

    13. [13]

      A. Acharya, K. Samanta, C.P. Rao, Conjugates of calixarenes emerging as molecular entities of nanoscience, Coord. Chem. Rev. 256(2012) 2096-2125.

    14. [14]

      M.T. Reetz, W. Helbig. Size-selective synthesis of nanostructured transition metal clusters[J]. J. Am. Chem. Soc., 1994,116:7401-7402.

    15. [15]

      A. Henglein. Physicochemical properties of small metal particles in solution:"microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition[J]. J. Phys. Chem., 1993,97:5457-5471. doi: 10.1021/j100123a004

    16. [16]

      R.A. Caruso, M. Ashokkumar, F. Grieser. Sonochemical formation of colloidal platinum[J]. Colloids Surf. A:Physicochem. Eng. Asp., 2000,169:219-225. doi: 10.1016/S0927-7757(00)00438-6

    17. [17]

      T. Fujimoto, S.Y. Terauchi, H. Umehara, I. Kojima, W. Henderson. Sonochemical preparation of single-dispersion metal nanoparticles from metal salts[J]. Chem. Mater., 2001,13:1057-1060. doi: 10.1021/cm000910f

    18. [18]

      K.L. Zhang, Y.G. Du, S.M. Chen. Facile one-pot polyol method for the synthesis of uniform size silver nanowires[J]. J. Nanosci. Nanotechnol., 2016,16:480-488. doi: 10.1166/jnn.2016.12158

    19. [19]

      I.D.G. Macdonald, W.E. Smith. Orientation of cytochrome c adsorbed on a citratereduced silver colloid surface[J]. Langmuir, 1996,12:706-713. doi: 10.1021/la950256w

    20. [20]

      Y.M. Chung, H.K. Rhee, Dendrimer-templated Ag-Pd bimetallic nanoparticles, J. Colloid Interface Sci. 271(2004) 131-135.

    21. [21]

      P. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha, M. Sastry, Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible, Langmuir 19(2003) 3545-3549.

    22. [22]

      S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Lett. 9(2009) 1593-1597.

    23. [23]

      J.L. Zhang, H.J. Yang, G.X. Shen, et al., Reduction of graphene oxide vial-ascorbic acid, Chem. Commun. 46(2010) 1112-1114.

    24. [24]

      H. Hirai, Y. Nakao, N. Toshima. Preparation of colloidal rhodium in poly (vinyl alcohol) by reduction with methanol[J]. J. Macromol. Sci. Chem., 1978,12:1117-1141. doi: 10.1080/00222337808063179

    25. [25]

      Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, Y.N. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone), Chem. Mater. 14(2002) 4736-4745.

    26. [26]

      K.D. Bhatt, B.A. Makwana, D.J. Vyas, D.R. Mishra, V.K. Jain. Selective recognition by novel calix system:ICT based chemosensor for metal ions[J]. J. Lumin., 2014,146:450-457. doi: 10.1016/j.jlumin.2013.10.004

    27. [27]

      K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain. Highly stable water dispersible calix[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2014,121:94-100. doi: 10.1016/j.saa.2013.10.076

    28. [28]

      D.J. Vyas, B.A. Makwana, H.S. Gupte, K.D. Bhatt, V.K. Jain. An efficient one pot synthesis of water-dispersible calix[J]. J. Nanosci. Nanotechnol., 2012,12:3781-3787. doi: 10.1166/jnn.2012.5837

    29. [29]

      Y. Zhou, J. Yoon. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chem. Soc. Rev., 2012,41:52-67. doi: 10.1039/C1CS15159B

    30. [30]

      H.B. Li, Y.H. Bian. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+[J]. Nanotechnology, 2009,20145502. doi: 10.1088/0957-4484/20/14/145502

    31. [31]

      D.R. Bae, W.S. Han, J.M. Lim. Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins[J]. Langmuir, 2009,26:2181-2185.

    32. [32]

      D.J. Xiong, M.L. Chen, H.B. Li, Synthesis of para-sulfonatocalix[4] arene-modified silver nanoparticles as colorimetric histidine probes, Chem. Commun. (2008) 880-882.

    33. [33]

      H.B. Li, F.Y. Li, C.P. Han. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J]. Sens. Actuators B:Chem., 2010,145:194-199. doi: 10.1016/j.snb.2009.11.062

    34. [34]

      Z. Huang, J. Du, J. Zhang, X.Q. Yu, L. Pu. A simple and efficient fluorescent sensor for histidine[J]. Chem. Commun., 2012,48:3412-3414. doi: 10.1039/c2cc17156b

    35. [35]

      J.E. Miller, C. Grădinaru, B.R. Crane. Spectroscopy and reactivity of a photogenerated tryptophan radical in a structurally defined protein environment[J]. J. Am. Chem. Soc., 2003,125:14220-14221. doi: 10.1021/ja037203i

    36. [36]

      S. Diem, J. Bergmann, M. Herderich. Tryptophan-N-glucoside in fruits and fruit juices[J]. J. Agric. Food Chem., 2000,48:4913-4917. doi: 10.1021/jf0003146

    37. [37]

      A. Özcan, Y. Şahin, A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode, Biosens. Bioelectron. 31(2012) 26-31.

    38. [38]

      M.L. Bishop, E.P. Fody, L.E. Schoef, Clinical Chemistry:Principles, Techniques, and Correlations, 7th ed., Lippincott Williams & Wilkins, New York, 2013p. 205.

    39. [39]

      M. Rai, A. Yadav, A. Gade. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnol. Adv., 2009,27:76-83. doi: 10.1016/j.biotechadv.2008.09.002

    40. [40]

      H.J. Klasen, A historical review of the use of silver in the treatment of burns II. Renewed interest for silver, Burns 26(2000) 131-138.

    41. [41]

      J.J. Castellano, S.M. Shafii, F. Ko. Comparative evaluation of silver-containing antimicrobial dressings and drugs[J]. Int. Wound J., 2007,4:114-122. doi: 10.1111/iwj.2007.4.issue-2

    42. [42]

      S.M. Darjee, D.R. Mishra, K.D. Bhatt. A new colorimetric and fluorescent chemosensor based on thiacalix[4] arene for fluoride ions[J]. Tetrahedron Lett., 2014,55:7094-7098. doi: 10.1016/j.tetlet.2014.10.149

    43. [43]

      E.A. Yushkova, I.I. Stoikov, P-tert-butyl thiacalix[4] arenes functionalized with amide and hydrazide groups at the lower rim in cone, partial cone, and 1, 3-alternate conformations are "smart" building blocks for constructing nanosized structures with metal cations of s-, p-, and d-elements in the organic phase, Langmuir 25(2009) 4919-4928.

    44. [44]

      I.I. Stoikov, E.A. Yushkova, I. Zharov, I.S. Antipin, A.I. Konovalov. Supramolecular self-assemblies of stereoisomers of p-tert-butyl thiacalix[4] arenes functionalized with hydrazide groups at the lower rim with some metal cations[J]. Tetrahedron, 2009,65:7109-7114. doi: 10.1016/j.tet.2009.06.045

    45. [45]

      M. Grzelczak, L.M. Liz-Marzán. The relevance of light in the formation of colloidal metal nanoparticles[J]. Chem. Soc. Rev., 2014,43:2089-2097. doi: 10.1039/C3CS60256G

    46. [46]

      M. Shen, W.F. Chen, Y. Sun, C.G. Yan. Synthesis and characterization of watersoluble gold colloids stabilized with aminoresorcinarene[J]. J. Phys. Chem. Solids, 2007,68:2252-2261. doi: 10.1016/j.jpcs.2007.06.007

    47. [47]

      T.T. Li, N.Y. He, J.H. Wang. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters[J]. RSC Adv., 2016,6:22839-22844. doi: 10.1039/C5RA22489F

    48. [48]

      D. Zhou, X.M. Lin, A.L. Wang. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles[J]. Sci. China Chem., 2015,58:979-985. doi: 10.1007/s11426-014-5265-x

    49. [49]

      N. Wangoo, K.K. Bhasin, S.K. Mehta, C.R. Suri. Synthesis and capping of waterdispersed gold nanoparticles by an amino acid:bioconjugation and binding studies[J]. J. Colloid Interface Sci., 2008,323:247-254. doi: 10.1016/j.jcis.2008.04.043

    50. [50]

      S. Pal, Y.K. Tak, J.M. Song. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Appl. Environ. Microbiol., 2007,73:1712-1720. doi: 10.1128/AEM.02218-06

    51. [51]

      J.S. Kim, E. Kuk, K.N. Yu. Antimicrobial effects of silver nanoparticles[J]. Nanomed.:Nanotechnol. Biol. Med., 2007,3:95-101. doi: 10.1016/j.nano.2006.12.001

    52. [52]

      S.H. Jun, S. Cho, Y. Park. Functionalization of lysostaphin on gold and silver nanoparticles and their in vitro antibacterial activities against methicillin-resistant Staphylococcus aureus[J]. Nanosci. Nanotechnol. Lett., 2015,7:433-440. doi: 10.1166/nnl.2015.1954

    53. [53]

      S.P. Shukla, M. Roy, P. Mukherjee. Size selective green synthesis of silver and gold nanoparticles:enhanced antibacterial efficacy of resveratrol capped silver sol[J]. J. Nanosci. Nanotechnol., 2016,16:2453-2463. doi: 10.1166/jnn.2016.10772

  • 加载中
    1. [1]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    4. [4]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    5. [5]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    8. [8]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    9. [9]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    10. [10]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    11. [11]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    12. [12]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    13. [13]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    14. [14]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    15. [15]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    16. [16]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    17. [17]

      Yubin FengWeihang ZhuXinting YangZhe YangChenke WeiYukai GuoAndrew K. WhittakerChun ShenYue ZhaoWenrui QuBai YangQuan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554

    18. [18]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    19. [19]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    20. [20]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

Metrics
  • PDF Downloads(0)
  • Abstract views(716)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return