Scrupulous recognition of biologically important acids by fluorescent "turn off-on" mechanism of thaicalix reduced silver nanoparticles
- Corresponding author: D. Bhatt Keyur, drkdbhatt@outlook.com
Citation:
M. Darjee Savan, D. Bhatt Keyur, S. Panchal Urvi, K. Jain Vinod. Scrupulous recognition of biologically important acids by fluorescent "turn off-on" mechanism of thaicalix reduced silver nanoparticles[J]. Chinese Chemical Letters,
;2017, 28(2): 312-318.
doi:
10.1016/j.cclet.2016.07.026
Y. Sun, L. Zhang, H.B. Li, Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters, New J. Chem. 36(2012) 1442-1444.
A. Ravindran, V. Mani, N. Chandrasekaran, A. Mukherjee. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr3+[J]. Talanta, 2011,85:533-540. doi: 10.1016/j.talanta.2011.04.031
K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour, Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles, Sens. Actuators B:Chem. 161(2012) 880-885.
H.B. Li, Z.M. Cui, C.P. Han. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion[J]. Sens. Actuators B:Chem., 2009,143:87-92. doi: 10.1016/j.snb.2009.09.013
N. Pradhan, A. Pal, T. Pal. Silver nanoparticle catalyzed reduction of aromatic nitro compounds[J]. Colloids Surf. A:Physicochem. Eng. Asp., 2002,196:247-257. doi: 10.1016/S0927-7757(01)01040-8
Q.L. Feng, J. Wu, G.Q. Chen. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. J. Biomed. Mater. Res., 2000,52:662-668. doi: 10.1002/(ISSN)1097-4636
A.B.G. Lansdown. Silver I:its antibacterial properties and mechanism of action[J]. J. Wound Care, 2002,11:125-130. doi: 10.12968/jowc.2002.11.4.26389
J.R. Morones, J.L. Elechiguerra, A. Camacho. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005,16:2346-2353. doi: 10.1088/0957-4484/16/10/059
I. Sondi, B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria[J]. J. Colloid Interface Sci., 2004,275:177-182. doi: 10.1016/j.jcis.2004.02.012
P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano 3(2009) 279-290.
G. Anjana, M. Gowri, C.S. Raja, et al., Silver nanoparticles as a non alcoholic hospital disinfectant to combat nosocomial pathogens, J. Bionanosc. 9(2015) 102-111.
B.A. Makwana, D.J. Vyas, K.D. Bhatt, S. Darji, V.K. Jain. Novel fluorescent silver nanoparticles:sensitive and selective turn off sensor for cadmium ions[J]. Appl. Nanosci., 2016,6:555-566. doi: 10.1007/s13204-015-0459-x
A. Acharya, K. Samanta, C.P. Rao, Conjugates of calixarenes emerging as molecular entities of nanoscience, Coord. Chem. Rev. 256(2012) 2096-2125.
M.T. Reetz, W. Helbig. Size-selective synthesis of nanostructured transition metal clusters[J]. J. Am. Chem. Soc., 1994,116:7401-7402.
A. Henglein. Physicochemical properties of small metal particles in solution:"microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition[J]. J. Phys. Chem., 1993,97:5457-5471. doi: 10.1021/j100123a004
R.A. Caruso, M. Ashokkumar, F. Grieser. Sonochemical formation of colloidal platinum[J]. Colloids Surf. A:Physicochem. Eng. Asp., 2000,169:219-225. doi: 10.1016/S0927-7757(00)00438-6
T. Fujimoto, S.Y. Terauchi, H. Umehara, I. Kojima, W. Henderson. Sonochemical preparation of single-dispersion metal nanoparticles from metal salts[J]. Chem. Mater., 2001,13:1057-1060. doi: 10.1021/cm000910f
K.L. Zhang, Y.G. Du, S.M. Chen. Facile one-pot polyol method for the synthesis of uniform size silver nanowires[J]. J. Nanosci. Nanotechnol., 2016,16:480-488. doi: 10.1166/jnn.2016.12158
I.D.G. Macdonald, W.E. Smith. Orientation of cytochrome c adsorbed on a citratereduced silver colloid surface[J]. Langmuir, 1996,12:706-713. doi: 10.1021/la950256w
Y.M. Chung, H.K. Rhee, Dendrimer-templated Ag-Pd bimetallic nanoparticles, J. Colloid Interface Sci. 271(2004) 131-135.
P. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha, M. Sastry, Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible, Langmuir 19(2003) 3545-3549.
S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Lett. 9(2009) 1593-1597.
J.L. Zhang, H.J. Yang, G.X. Shen, et al., Reduction of graphene oxide vial-ascorbic acid, Chem. Commun. 46(2010) 1112-1114.
H. Hirai, Y. Nakao, N. Toshima. Preparation of colloidal rhodium in poly (vinyl alcohol) by reduction with methanol[J]. J. Macromol. Sci. Chem., 1978,12:1117-1141. doi: 10.1080/00222337808063179
Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, Y.N. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone), Chem. Mater. 14(2002) 4736-4745.
K.D. Bhatt, B.A. Makwana, D.J. Vyas, D.R. Mishra, V.K. Jain. Selective recognition by novel calix system:ICT based chemosensor for metal ions[J]. J. Lumin., 2014,146:450-457. doi: 10.1016/j.jlumin.2013.10.004
K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain. Highly stable water dispersible calix[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2014,121:94-100. doi: 10.1016/j.saa.2013.10.076
D.J. Vyas, B.A. Makwana, H.S. Gupte, K.D. Bhatt, V.K. Jain. An efficient one pot synthesis of water-dispersible calix[J]. J. Nanosci. Nanotechnol., 2012,12:3781-3787. doi: 10.1166/jnn.2012.5837
Y. Zhou, J. Yoon. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids[J]. Chem. Soc. Rev., 2012,41:52-67. doi: 10.1039/C1CS15159B
H.B. Li, Y.H. Bian. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+[J]. Nanotechnology, 2009,20145502. doi: 10.1088/0957-4484/20/14/145502
D.R. Bae, W.S. Han, J.M. Lim. Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins[J]. Langmuir, 2009,26:2181-2185.
D.J. Xiong, M.L. Chen, H.B. Li, Synthesis of para-sulfonatocalix[4] arene-modified silver nanoparticles as colorimetric histidine probes, Chem. Commun. (2008) 880-882.
H.B. Li, F.Y. Li, C.P. Han. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J]. Sens. Actuators B:Chem., 2010,145:194-199. doi: 10.1016/j.snb.2009.11.062
Z. Huang, J. Du, J. Zhang, X.Q. Yu, L. Pu. A simple and efficient fluorescent sensor for histidine[J]. Chem. Commun., 2012,48:3412-3414. doi: 10.1039/c2cc17156b
J.E. Miller, C. Grădinaru, B.R. Crane. Spectroscopy and reactivity of a photogenerated tryptophan radical in a structurally defined protein environment[J]. J. Am. Chem. Soc., 2003,125:14220-14221. doi: 10.1021/ja037203i
S. Diem, J. Bergmann, M. Herderich. Tryptophan-N-glucoside in fruits and fruit juices[J]. J. Agric. Food Chem., 2000,48:4913-4917. doi: 10.1021/jf0003146
A. Özcan, Y. Şahin, A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode, Biosens. Bioelectron. 31(2012) 26-31.
M.L. Bishop, E.P. Fody, L.E. Schoef, Clinical Chemistry:Principles, Techniques, and Correlations, 7th ed., Lippincott Williams & Wilkins, New York, 2013p. 205.
M. Rai, A. Yadav, A. Gade. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnol. Adv., 2009,27:76-83. doi: 10.1016/j.biotechadv.2008.09.002
H.J. Klasen, A historical review of the use of silver in the treatment of burns II. Renewed interest for silver, Burns 26(2000) 131-138.
J.J. Castellano, S.M. Shafii, F. Ko. Comparative evaluation of silver-containing antimicrobial dressings and drugs[J]. Int. Wound J., 2007,4:114-122. doi: 10.1111/iwj.2007.4.issue-2
S.M. Darjee, D.R. Mishra, K.D. Bhatt. A new colorimetric and fluorescent chemosensor based on thiacalix[4] arene for fluoride ions[J]. Tetrahedron Lett., 2014,55:7094-7098. doi: 10.1016/j.tetlet.2014.10.149
E.A. Yushkova, I.I. Stoikov, P-tert-butyl thiacalix[4] arenes functionalized with amide and hydrazide groups at the lower rim in cone, partial cone, and 1, 3-alternate conformations are "smart" building blocks for constructing nanosized structures with metal cations of s-, p-, and d-elements in the organic phase, Langmuir 25(2009) 4919-4928.
I.I. Stoikov, E.A. Yushkova, I. Zharov, I.S. Antipin, A.I. Konovalov. Supramolecular self-assemblies of stereoisomers of p-tert-butyl thiacalix[4] arenes functionalized with hydrazide groups at the lower rim with some metal cations[J]. Tetrahedron, 2009,65:7109-7114. doi: 10.1016/j.tet.2009.06.045
M. Grzelczak, L.M. Liz-Marzán. The relevance of light in the formation of colloidal metal nanoparticles[J]. Chem. Soc. Rev., 2014,43:2089-2097. doi: 10.1039/C3CS60256G
M. Shen, W.F. Chen, Y. Sun, C.G. Yan. Synthesis and characterization of watersoluble gold colloids stabilized with aminoresorcinarene[J]. J. Phys. Chem. Solids, 2007,68:2252-2261. doi: 10.1016/j.jpcs.2007.06.007
T.T. Li, N.Y. He, J.H. Wang. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters[J]. RSC Adv., 2016,6:22839-22844. doi: 10.1039/C5RA22489F
D. Zhou, X.M. Lin, A.L. Wang. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles[J]. Sci. China Chem., 2015,58:979-985. doi: 10.1007/s11426-014-5265-x
N. Wangoo, K.K. Bhasin, S.K. Mehta, C.R. Suri. Synthesis and capping of waterdispersed gold nanoparticles by an amino acid:bioconjugation and binding studies[J]. J. Colloid Interface Sci., 2008,323:247-254. doi: 10.1016/j.jcis.2008.04.043
S. Pal, Y.K. Tak, J.M. Song. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Appl. Environ. Microbiol., 2007,73:1712-1720. doi: 10.1128/AEM.02218-06
J.S. Kim, E. Kuk, K.N. Yu. Antimicrobial effects of silver nanoparticles[J]. Nanomed.:Nanotechnol. Biol. Med., 2007,3:95-101. doi: 10.1016/j.nano.2006.12.001
S.H. Jun, S. Cho, Y. Park. Functionalization of lysostaphin on gold and silver nanoparticles and their in vitro antibacterial activities against methicillin-resistant Staphylococcus aureus[J]. Nanosci. Nanotechnol. Lett., 2015,7:433-440. doi: 10.1166/nnl.2015.1954
S.P. Shukla, M. Roy, P. Mukherjee. Size selective green synthesis of silver and gold nanoparticles:enhanced antibacterial efficacy of resveratrol capped silver sol[J]. J. Nanosci. Nanotechnol., 2016,16:2453-2463. doi: 10.1166/jnn.2016.10772
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Yijian Zhao , Jvzhe Li , Yunyi Shi , Jie Hu , Meiyi Liu , Yao Shen , Xinglin Hou , Qiuyue Wang , Qi Wang , Zhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Yubin Feng , Weihang Zhu , Xinting Yang , Zhe Yang , Chenke Wei , Yukai Guo , Andrew K. Whittaker , Chun Shen , Yue Zhao , Wenrui Qu , Bai Yang , Quan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399