Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers
- Corresponding author: Zhang Jian-Yong, zhjyong@mail.sysu.edu.cn
Citation:
Zhang Jian-Yong, Zeng Li-Hua, Feng Juan. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers[J]. Chinese Chemical Letters,
;2017, 28(2): 168-183.
doi:
10.1016/j.cclet.2016.07.015
K. Almdal, J. Dyre, S. Hvidt, O. Kramer. Towards a phenomenological definition of the term 'gel'[J]. Polym. Gels Netw., 1993,1:5-17. doi: 10.1016/0966-7822(93)90020-I
P.J. Flory. Introductory lecture[J]. Faraday Discuss. Chem. Soc., 1974,57:7-18. doi: 10.1039/dc9745700007
R.G. Weiss, P. Té rech, Molecular gels, in:R.G. Weiss, P. Té rech (Eds.), Materials With Self-assembled Fibrillar Networks, Springer, Netherlands, 2006, pp. 1-13.
J.M. Guenet. Microfibrillar networks:polymer thermoreversible gels vs organogels[J]. Macromol. Symp., 2006,241:45-50. doi: 10.1002/(ISSN)1521-3900
E. Dickinson, Structure and rheology of colloidal particle gels:insight from computer simulation, Adv. Colloid Interface Sci. 199-200(2013) 114-127.
Z.J. Zhao, J.W.Y. Lam, B.Z. Tang. Self-assembly of organic luminophores with gelation-enhanced emission characteristics[J]. Soft Matter, 2013,9:4564-4579. doi: 10.1039/c3sm27969c
J.M. Lehn. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 1988,27:89-112. doi: 10.1002/(ISSN)1521-3773
J.M. Lehn. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem. Int. Ed., 1990,29:1304-1319. doi: 10.1002/(ISSN)1521-3773
N.M. Sangeetha, U. Maitra. Supramolecular gels:functions and uses[J]. Chem. Soc. Rev., 2005,34:821-836. doi: 10.1039/b417081b
P. Dastidar. Supramolecular gelling agents:can they be designed[J]. Chem. Soc. Rev., 2008,37:2699-2715. doi: 10.1039/b807346e
E.A. Appel, F. Biedermann, U. Rauwald. Supramolecular cross-linked networks via host-guest complexation with cucurbit[J]. J. Am. Chem. Soc., 2010,132:14251-14260. doi: 10.1021/ja106362w
S.Y. Dong, J.Y. Yuan, F.H. Huang, A pillar[5] arene/imidazolium[2] rotaxane:solvent-and thermo-driven molecular motions and supramolecular gel formation, Chem. Sci. 5(2014) 247-252.
Y.K. Tian, Y.G. Shi, Z.S. Yang, F. Wang, Responsive supramolecular polymers based on the bis[alkynylplatinum(II)] terpyridine molecular tweezer/arene recognition motif, Angew. Chem. Int. Ed. 53(2014) 6090-6094.
J.M. Hu, S.Y. Liu. Engineering responsive polymer building blocks with hostguest molecular recognition for functional applications[J]. Acc. Chem. Res., 2014,47:2084-2095. doi: 10.1021/ar5001007
S. Bhattacharjee, S. Bhattacharya. Charge transfer induces formation of stimuliresponsive, chiral, cohesive vesicles-on-α-string that eventually turn into a hydrogel[J]. Chem. Asian J., 2015,10:572-580. doi: 10.1002/asia.201403205
A. Das, S. Ghosh. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores[J]. Angew. Chem. Int. Ed., 2014,53:2038-2054. doi: 10.1002/anie.201307756
J.F. Xu, Y.Z. Chen, D.Y. Wu. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit[J]. Angew. Chem. Int. Ed., 2013,52:9738-9742. doi: 10.1002/anie.201303496
C. Rest, M.J. Mayoral, K. Fucke. Self-assembly and (hydro)gelation triggered by cooperative π-π and unconventional C-H…X hydrogen bonding interactions[J]. Angew. Chem. Int. Ed., 2014,53:700-705. doi: 10.1002/anie.201307806
K. Hanabusa, T. Miki, Y. Taguchi, T. Koyama, H. Shirai, Two-component, small molecule gelling agents, J. Chem. Soc. Chem. Commun. (1993) 1382-1384.
N.N. Adarsh, D.K. Kumar, P. Dastidar. Composites of N, N'-bis-(pyridyl) ureadicarboxylic acid as new hydrogelators-a crystal engineering approach[J]. Tetrahedron, 2007,63:7386-7396. doi: 10.1016/j.tet.2007.02.005
L. Meazza, J.A. Foster, K. Fucke. Halogen-bonding-triggered supramolecular gel formation[J]. Nat. Chem., 2013,5:42-47.
J.P. Hill, W.S. Jin, A. Kosaka. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube[J]. Science, 2004,304:1481-1483. doi: 10.1126/science.1097789
Y. Feng, Z.T. Liu, J. Liu. Peripherally dimethyl isophthalate-functionalized poly(benzyl ether) dendrons:a new kind of unprecedented highly efficient organogelators[J]. J. Am. Chem. Soc., 2009,131:7950-7951. doi: 10.1021/ja901501j
A.P. Sivadas, N.S.S. Kumar, D.D. Prabhu. Supergelation via purely aromatic π-π driven self-assembly of pseudodiscotic oxadiazole mesogens[J]. J. Am. Chem. Soc., 2014,136:5416-5423. doi: 10.1021/ja500607d
T. Naota, H. Koori. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids[J]. J. Am. Chem. Soc., 2005,127:9324-9325. doi: 10.1021/ja050809h
D.J. Abdallah, S.A. Sirchio, R.G. Weiss. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state[J]. Langmuir, 2000,16:7558-7561. doi: 10.1021/la000730k
L.Y. Gao, B. Zheng, Y. Yao, F.H. Huang, Responsive reverse giant vesicles and gel from self-organization of a bolaamphiphilic pillar[5] arene, Soft Matter 9(2013) 7314-7319.
X.Z. Yan, S.J. Li, T.R. Cook. Hierarchical self-assembly:well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles[J]. J. Am. Chem. Soc., 2013,135:14036-14039. doi: 10.1021/ja406877b
S.Y. Dong, Y. Luo, X.Z. Yan, et al., A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition, Angew. Chem. Int. Ed. 50(2011) 1905-1909.
S.Y. Dong, B. Zheng, D.H. Xu, et al., A crown ether appended super gelator with multiple stimulus responsiveness, Adv. Mater. 24(2012) 3191-3195.
Z.H. Qi, C.A. Schalley. Exploring macrocycles in functional supramolecular gels:from stimuli responsiveness to systems chemistry[J]. Acc. Chem. Res., 2014,47:2222-2233. doi: 10.1021/ar500193z
X.Z. Yan, D.H. Xu, X.D. Chi, et al., A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly, Adv. Mater. 24(2012) 362-369.
X.Z. Yan, T.R. Cook, J.B. Pollock. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions[J]. J. Am. Chem. Soc., 2014,136:4460-4463. doi: 10.1021/ja412249k
Q.G. Wang, J.L. Mynar, M. Yoshida. High-water-contentmouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010,463:339-343. doi: 10.1038/nature08693
L.E. Buerkle, S.J. Rowan. Supramolecular gels formed from multi-component low molecular weight species[J]. Chem. Soc. Rev., 2012,41:6089-6102. doi: 10.1039/c2cs35106d
J. Raeburn, D.J. Adams. Multicomponent low molecular weight gelators[J]. Chem. Commun., 2015,51:5170-5180. doi: 10.1039/C4CC08626K
A.R. Hirst, D.K. Smith. Two-component gel-phase materials-highly tunable selfassembling systems[J]. Chem. Eur. J., 2005,11:5496-5508. doi: 10.1002/(ISSN)1521-3765
J.Y. Zhang, C.Y. Su. Metal-organic gels:from discrete metallogelators to coordination polymers[J]. Coord. Chem. Rev., 2013,257:1373-1408. doi: 10.1016/j.ccr.2013.01.005
A.Y.Y. Tam, V.W.W. Yam. Recent advances in metallogels[J]. Chem. Soc. Rev., 2013,42:1540-1567. doi: 10.1039/c2cs35354g
M.O.M. Piepenbrock, G.O. Lloyd, N. Clarke, J.W. Steed. Metal-and anion-binding supramolecular gels[J]. Chem. Rev., 2010,110:1960-2004. doi: 10.1021/cr9003067
R.J. Wojtecki, M.A. Meador, S.J. Rowan. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers[J]. Nat. Mater., 2011,10:14-27. doi: 10.1038/nmat2891
J.M. Lehn. Dynamic combinatorial chemistry and virtual combinatorial libraries[J]. Chem. Eur. J., 1999,5:2455-2463. doi: 10.1002/(ISSN)1521-3765
P.T. Corbett, J. Leclaire, L. Vial. Dynamic combinatorial chemistry[J]. Chem. Rev., 2006,106:3652-3711. doi: 10.1021/cr020452p
S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K.M. Sanders, J.F. Stoddart. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41:898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R
A. Herrmann. Dynamic combinatorial/covalent chemistry:a tool to read, generate and modulate the bioactivity of compounds and compound mixtures[J]. Chem. Soc. Rev., 2014,43:1899-1933. doi: 10.1039/C3CS60336A
R.A.R. Hunta, S. Otto. Dynamic combinatorial libraries:new opportunities in systems chemistry[J]. Chem. Commun., 2011,47:847-858. doi: 10.1039/C0CC03759A
E. Moulin, G. Cormos, N. Giuseppone. Dynamic combinatorial chemistry as a tool for the design of functional materials and devices[J]. Chem. Soc. Rev., 2012,41:1031-1049. doi: 10.1039/C1CS15185A
J.W. Li, P. Nowak, S. Otto. Dynamic combinatorial libraries:from exploring molecular recognition to systems chemistry[J]. J. Am. Chem. Soc., 2013,135:9222-9239. doi: 10.1021/ja402586c
D. Beaudoin, T. Maris, J.D. Wuest. Constructing monocrystalline covalent organic networks by polymerization[J]. Nat. Chem., 2013,5:830-834. doi: 10.1038/nchem.1730
P. Terech, R.G. Weiss. Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chem. Rev., 1997,97:3133-3160. doi: 10.1021/cr9700282
L.A. Estroff, A.D. Hamilton. Water gelation by small organic molecules[J]. Chem. Rev., 2004,104:1201-1218. doi: 10.1021/cr0302049
A.R. Hirst, B. Escuder, J.F. Miravet, D.K. Smith. High-tech applications of selfassembling supramolecular nanostructured gel-phase materials:from regenerative medicine to electronic devices[J]. Angew. Chem. Int. Ed., 2008,47:8002-8018. doi: 10.1002/anie.v47:42
S.S. Babu, V.K. Praveen, A. Ajayaghosh. Functional π-gelators and their applications[J]. Chem. Rev., 2014,114:1973-2129. doi: 10.1021/cr400195e
G.C. Yu, X.Z. Yan, C.Y. Han, F.H. Huang. Characterization of supramolecular gels[J]. Chem. Soc. Rev., 2013,42:6697-6722. doi: 10.1039/c3cs60080g
T. Tu, W.W. Fang, Z.M. Sun. Visual-size molecular recognition based on gels[J]. Adv. Mater., 2013,25:5304-5313. doi: 10.1002/adma.201301914
M. Suzuki, K. Hanabusa. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly[J]. Chem. Soc. Rev., 2010,39:455-463. doi: 10.1039/B910604A
C.J. Kloxin, C.N. Bowman. Covalent adaptable networks:smart, reconfigurable and responsive network systems[J]. Chem. Soc. Rev., 2013,42:7161-7173. doi: 10.1039/C3CS60046G
H.Y. Wang, S.C. Heilshorn. Adaptable hydrogel networks with reversible linkages for tissue engineering[J]. Adv. Mater., 2015,27:3717-3736. doi: 10.1002/adma.v27.25
Y.H. Jin, C. Yu, R.J. Denman, W. Zhang. Recent advances in dynamic covalent chemistry[J]. Chem. Soc. Rev., 2013,42:6634-6654. doi: 10.1039/c3cs60044k
C.D. Meyer, C.S. Joiner, J.F. Stoddart. Template-directed synthesis employing reversible imine bond formation[J]. Chem. Soc. Rev., 2007,36:1705-1723. doi: 10.1039/b513441m
M.L.C. Quan, D.J. Cram. Constrictive binding of large guests by a hemicarcerand containing four portals[J]. J. Am. Chem. Soc., 1991,113:2754-2755. doi: 10.1021/ja00007a060
T.T. Tidwell. Hugo (Ugo) schiff, schiff Bases, and a century of β-lactam synthesis[J]. Angew. Chem. Int. Ed., 2008,47:1016-1020. doi: 10.1002/(ISSN)1521-3773
M.E. Belowich, J.F. Stoddart. Dynamic imine chemistry[J]. Chem. Soc. Rev., 2012,41:2003-2024. doi: 10.1039/c2cs15305j
M. Ciaccia, S.D. Stefano. Mechanisms of imine exchange reactions in organic solvents[J]. Org. Biomol. Chem., 2015,13:646-654. doi: 10.1039/C4OB02110J
S. Yamada, Advancement in stereochemical aspects of schiff base metal complexes, Coord. Chem. Rev. 190-192(1999) 537-555.
M. Rezaeivala, H. Keypour. Schiff base and non-schiff base macrocyclic ligands and complexes incorporating the pyridine moiety-the first 50 years[J]. Coord. Chem. Rev., 2014,280:203-253. doi: 10.1016/j.ccr.2014.06.007
H. Vardhan, A. Mehta, I. Nath, F. Verpoort. Dynamic imine chemistry in metal-organic polyhedra[J]. RSC Adv., 2015,5:67011-67030. doi: 10.1039/C5RA10801B
A. Dirksen, S. Dirksen, T.M. Hackeng, P.E. Dawson. Nucleophilic catalysis of hydrazone formation and transimination:implications for dynamic covalent chemistry[J]. J. Am. Chem. Soc., 2006,128:15602-15603. doi: 10.1021/ja067189k
A. Sanyal. Diels-Alder cycloaddition-cycloreversion:a powerful combo in materials design[J]. Macromol. Chem. Phys., 2010,211:1417-1425. doi: 10.1002/macp.v211:13
X.X. Chen, M.A. Dam, K. Ono, et al., A thermally re-mendable cross-linked polymeric material, Science 295(2002) 1698-1702.
S.D. Bergman, F. Wudl. Mendable polymers[J]. J. Mater. Chem., 2008,18:41-62. doi: 10.1039/B713953P
B.J. Adzima, H.A. Aguirre, C.J. Kloxin, T.F. Scott, C.N. Bowman. Rheological, chemical analysis of reverse gelation in a covalently cross-linked diels-alder polymer network[J]. Macromolecules, 2008,41:9112-9117. doi: 10.1021/ma801863d
A.J. Inglis, L. Nebhani, O. Altintas, F.G. Schmidt, C. Barner-Kowollik. Rapid bonding/debonding on demand:reversibly cross-linked functional polymers via diels-alder chemistry[J]. Macromolecules, 2010,43:5515-5520. doi: 10.1021/ma100945b
J.Q. Zhang, Y. Niu, C.L. Huang. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction[J]. Polym. Chem., 2012,3:1390-1393. doi: 10.1039/c2py20028g
G.C. Vougioukalakis, R.H. Grubbs. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chem. Rev., 2010,110:1746-1787. doi: 10.1021/cr9002424
R.R. Schrock. Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes[J]. J. Mol. Catal. A:Chem., 2004,213:21-30. doi: 10.1016/j.molcata.2003.10.060
Y.X. Lu, F. Tournilhac, L. Leibler, Z.B. Guan. Making insoluble polymer networks malleable via olefin metathesis[J]. J. Am. Chem. Soc., 2012,134:8424-8427. doi: 10.1021/ja303356z
K.D. Okochi, Y.H. Jin, W. Zhang. Highly efficient one-pot synthesis of heterosequenced shape-persistent macrocycles through orthogonal dynamic covalent chemistry (ODCC)[J]. Chem. Commun., 2013,49:4418-4420. doi: 10.1039/C2CC33078D
M.J. Marsella, H.D. Maynard, R.H. Grubbs. Template-directed ring-closing metathesis:synthesis and polymerization of unsaturated crown ether analogs[J]. Angew. Chem. Int. Ed., 1997,36:1101-1103. doi: 10.1002/(ISSN)1521-3773
H. Otsuka, T. Muta, M. Sakada, T. Maeda, A. Takahara, Scrambling reaction between polymers prepared by step-growth and chain-growth polymerizations:macromolecular cross-metathesis between 1, 4-polybutadiene and olefin-containing polyester, Chem. Commun. (2009) 1073-1075.
Y.H. Jin, A.B. Zhang, Y.S. Huang, W. Zhang. Shape-persistent arylenevinylene macrocycles (AVMs) prepared via acyclic diene metathesis macrocyclization (ADMAC)[J]. Chem. Commun., 2010,46:8258-8260. doi: 10.1039/c0cc02941f
R. Nishiyabu, Y. Kubo, T.D. James, J.S. Fossey. Boronic acid building blocks:tools for self assembly[J]. Chem. Commun., 2011,47:1124-1150. doi: 10.1039/C0CC02921A
D.G. Hall, Rhodium-catalyzed additions of boronic acids to alkenes and carbonyl compounds, in:D.G. Hall (Ed.), Boronic Acids:Preparation and Applications in Organic Synthesis and Medicine, Wiley-VCH, Weinheim, 2005, pp. 1-100.
D. Witt. Recent developments in disulfide bond formation[J]. Synthesis, 2008,16:2491-2509.
H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, A dynamic covalent polymer driven by disulfide metathesis under photoirradiation, Chem. Commun. 46(2010) 1150-1152.
T. Maeda, H. Otsuka, A. Takahara. Dynamic covalent polymers:reorganizable polymers with dynamic covalent bonds[J]. Prog. Polym. Sci., 2009,34:581-604. doi: 10.1016/j.progpolymsci.2009.03.001
T.F. Scott, A.D. Schneider, W.D. Cook, C.N. Bowman. Photoinduced plasticity in cross-linked[J]. Science, 2005,308:1615-1617. doi: 10.1126/science.1110505
D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler. Silica-like malleable materials from permanent organic networks[J]. Science, 2011,334:965-968. doi: 10.1126/science.1212648
S.D. Stefano, R. Cacciapaglia, L. Mandolini. Supramolecular control of reactivity and catalysis-effective molarities of recognition-mediated bimolecular reactions[J]. Eur. J. Org. Chem., 2014,2014:7304-7315. doi: 10.1002/ejoc.v2014.33
K.N. Long. The mechanics of network polymers with thermally reversible linkages[J]. J. Mech. Phys. Solids, 2014,63:386-411. doi: 10.1016/j.jmps.2013.08.017
Z. Wei, J.H. Yang, J.X. Zhou. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chem. Soc. Rev., 2014,43:8114-8131. doi: 10.1039/C4CS00219A
N. Sreenivasachary, J.M. Lehn. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation[J]. Proc. Natl. Acad. Sci. U. S. A., 2005,102:5938-5943. doi: 10.1073/pnas.0501663102
J.S. Foster, J.M. Z·urek, N.M.S. Almeida. Gelation landscape engineering using a multi-reaction supramolecular hydrogelator system[J]. J. Am. Chem. Soc., 2015,137:14236-14239. doi: 10.1021/jacs.5b06988
J. Boekhoven, J.M. Poolman, C. Maity. Catalytic control over supramolecular gel formation[J]. Nat. Chem., 2013,5:433-437. doi: 10.1038/nchem.1617
R. Eelkema, J.H. van Esch. Catalytic control over the formation of supramolecular materials[J]. Org. Biomol. Chem., 2014,12:6292-6296. doi: 10.1039/C4OB01108B
J.M. Poolman, C. Maity, J. Boekhoven, et al., A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels, J. Mater. Chem. B 4(2016) 852-858.
H. Qian, I. Aprahamian. An emissive and pH switchable hydrazone-based hydrogel[J]. Chem. Commun., 2015,51:11158-11161. doi: 10.1039/C5CC03007B
C.B. Minkenberg, L. Florusse, R. Eelkema, G.J.M. Kope, J.H. van Esch. Triggered self-assembly of simple dynamic covalent surfactants[J]. J. Am. Chem. Soc., 2009,131:11274-11275. doi: 10.1021/ja902808q
G.T. Wang, J.B. Lin, X.K. Jiang, Z.T. Li. Cholesterol-appended aromatic imine organogelators:a case study of gelation-driven component selection[J]. Langmuir, 2009,25:8414-8418. doi: 10.1021/la804188z
K. Lv, L. Qin, X.F. Wang, L. Zhang, M.H. Liu, A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding, Phys. Chem. Chem. Phys. 15(2013) 20197-20202.
Q.X. Jin, L. Zhang, X.F. Zhu, P.F. Duan, M.H. Liu. Amphiphilic schiff base organogels:metal-ion-mediated chiral twists and chiral recognition[J]. Chem. Eur. J., 2012,18:4916-4922. doi: 10.1002/chem.v18.16
H. Bunzen, E. Nonappa, S. Kalenius, E. Hietala. Kolehmainen, subcomponent selfassembly:a quick way to new metallogels[J]. Chem. Eur. J., 2013,19:12978-12981. doi: 10.1002/chem.v19.39
L.B. Zang, H.X. Shang, D.Y. Wei, S.M. Jiang, A multi-stimuli-responsive organogel based on salicylidene Schiff base, Sens. Actuators B 185(2013) 389-397.
J.W. Li, J.M.A. Carnall, M.C.A. Stuart, S. Otto. Hydrogel formation upon photoinduced covalent capture of macrocycle stacks from dynamic combinatorial libraries[J]. Angew. Chem. Int. Ed., 2011,50:8384-8386. doi: 10.1002/anie.v50.36
L.J. Prins, P. Scrimin. Covalent capture:merging covalent and noncovalent synthesis[J]. Angew. Chem. Int. Ed., 2009,48:2288-2306. doi: 10.1002/anie.200803583
K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai. Post-polymerization of preorganized assemblies for creating shape-controlled functional materials[J]. Chem. Soc. Rev., 2007,36:415-435. doi: 10.1039/B603555H
I.A. Coates, D.K. Smith. Controlled self-assembly-synthetic tunability and covalent capture of nanoscale gel morphologies[J]. Chem. Eur. J., 2009,15:6340-6344. doi: 10.1002/chem.v15:26
C.H. Ren, Z.J. Song, W.T. Zheng. Disulfide bond as a cleavable linker for molecular self-assembly and hydrogelation[J]. Chem. Commun., 2011,47:1619-1621. doi: 10.1039/C0CC04135A
Y. Shi, J.Y. Wang, H.M. Wang, et al., Glutathione-triggered formation of a fmocprotected short peptide-based supramolecular hydrogel, PLOS ONE 9(2014) e106968.
R.J. Williams, A.M. Smith, R. Collins. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,4:19-24. doi: 10.1038/nnano.2008.378
S. Toledano, R.J. Williams, V. Jayawarna, R.V. Ulijn. Enzyme-triggered selfassembly of peptide hydrogels via reversed hydrolysis[J]. J. Am. Chem. Soc., 2006,128:1070-1071. doi: 10.1021/ja056549l
P. Kaur, J.T. Hupp, S.T. Nguyen. Porous organic polymers in catalysis:opportunities and challenges[J]. ACS Catal., 2011,1:819-835. doi: 10.1021/cs200131g
Y.G. Zhang, S.N. Riduan. Functional porous organic polymers for heterogeneous catalysis[J]. Chem. Soc. Rev., 2012,41:2083-2094. doi: 10.1039/C1CS15227K
M.A. Khalily, M. Goktas, M.O. Guler. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking[J]. Org. Biomol. Chem., 2015,13:1983-1987. doi: 10.1039/C4OB02217C
N.B. McKeown, P.M. Budd. Exploitation of intrinsic microporosity in polymerbased materials[J]. Macromolecules, 2010,43:5163-5176. doi: 10.1021/ma1006396
A.P. Côté, A.I. Benin, N.W. Ockwig. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411
S.Y. Ding, W. Wang. Covalent organic frameworks (COFs):from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F
X. de Hatten, N. Bell, N. Yufa, G. Christmann, J.R. Nitschke, A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise, J. Am. Chem. Soc. 133(2011) 3158-3164.
J.A. Berrocal, L.M. Pitet, M.M.L. Nieuwenhuizen, et al., Ring-opening metathesis polymerization of a diolefinic[2]-catenane-copper(I) complex:an easy route to polycatenanes, Macromolecules 48(2015) 1358-1363.
J.A. Berrocal, S. Albano, L. Mandolini, S.D. Stefano, A CuI-based metallo-supramolecular gel-like material built from a library of oligomeric ligands featuring exotopic 1, 10-phenanthroline units, Eur. J. Org. Chem. 2015(2015) 7504-7510.
J.Y. Zhang, L.P. Liu, H.L. Liu. Highly porous aerogels based on imine chemistry:syntheses and sorption properties[J]. J. Mater. Chem. A, 2015,3:10990-10998. doi: 10.1039/C5TA00557D
W.J. Luo, Y.X. Zhu, J.Y. Zhang, et al., A dynamic covalent imine gel as a luminescent sensor, Chem. Commun. 50(2014) 11942-11945.
H.L. Liu, J. Feng, J.Y. Zhang, et al., A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry, Chem. Sci. 6(2015) 2292-2296.
P.A. Kerneghan, S.D. Halperin, D.L. Bryce, K.E. Maly. Postsynthetic modification of an imine-based microporous organic network[J]. Can. J. Chem., 2011,89:577-582. doi: 10.1139/v11-014
F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, et al., A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131(2009) 4570-4571.
L.H. Zeng, P.S. Liao, H.L. Liu. Impregnation of metal ions into porphyrinbased imine gels to modulate guest uptake and to assemble a catalytic microfluidic reactor[J]. J. Mater. Chem. A, 2016,4:8328-8336. doi: 10.1039/C6TA01035K
J.D. Luo, Z.L. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741.
Z.J. Zhao, J.W.Y. Lam, B.Z. Tang. Tetraphenylethene:a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes[J]. J. Mater. Chem., 2012,22:23726-23740. doi: 10.1039/c2jm31949g
K. Thiel, R. Zehbe, J. Roeser, et al., A polymer analogous reaction for the formation of imidazolium and NHC based porous polymernetworks, Polym. Chem. 4(2013) 1848-1856.
J.H. Lee, J. Park, J.W. Park, et al., Supramolecular gels with high strength by tuning of calix[4] arene-derived networks, Nat. Commun. 6(2015) 6650.
C.B. Minkenberg, W.E. Hendriksen, F. Li. Dynamic covalent assembly of stimuli responsive vesicle gels[J]. Chem. Commun., 2012,48:9837-9839. doi: 10.1039/c2cc34863b
C.B. Minkenberg, F. Li, P. van Rijn. Responsive vesicles from dynamic covalent surfactants[J]. Angew. Chem. Int. Ed., 2011,50:3421-3424. doi: 10.1002/anie.201007401
H.Z. Ying, Y.F. Zhang, J.J. Cheng. Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nat. Commun., 2014,53218.
M. Hutchby, C.E. Houlden, J.G. Ford. Hindered ureas as masked isocyanates:facile carbamoylation of nucleophiles under neutral conditions[J]. Angew. Chem. Int. Ed., 2009,48:8721-8724. doi: 10.1002/anie.v48:46
E. Delebecq, J.P. Pascault, B. Boutevin, F. Ganachaud. On the versatility of urethane/urea bonds:reversibility, blocked isocyanate, and non-isocyanate polyurethane[J]. Chem. Rev., 2013,113:80-118. doi: 10.1021/cr300195n
S.Y. Moon, J.S. Bae, E. Jeon, J.W. Park. Organic sol-gel synthesis:solution-processable microporous organic networks[J]. Angew. Chem. Int. Ed., 2010,49:9504-9508. doi: 10.1002/anie.201002609
S.Y. Moon, E. Jeon, J.S. Bae, M. Byeona, J.W. Park. Polyurea networks via organic sol-gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide[J]. Polym. Chem., 2014,5:1124-1131. doi: 10.1039/c3py01593a
S.Y. Moon, H.R. Mo, M.K. Ahn. Organic sol-gel synthesis of microporous molecular networks containing spirobifluorene and tetraphenylmethane nodes[J]. J. Polym. Sci. A:Polym. Chem., 2013,51:1758-1766. doi: 10.1002/pola.26552
S. Bhunia, N. Chatterjee, S. Das, K.D. Saha, A. Bhaumik. Porous polyurea network showing aggregation induced white light emission, applications as biosensor and scaffold for drug delivery[J]. ACS Appl. Mater. Interfaces, 2014,6:22569-22576. doi: 10.1021/am5066859
A. Wilson, G. Gasparini, S. Matile. Functional systems with orthogonal dynamic covalent bonds[J]. Chem. Soc. Rev., 2014,43:1948-1962. doi: 10.1039/C3CS60342C
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Xi Zhou , Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Ruike Hu , Kangmin Wang , Junxiang Liu , Jingxian Zhang , Guoliang Yang , Liqiu Wan , Bijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Adapted with permission from [100]. Copyright - the Owner Societies 2013.
Adapted with permission from [101]. Copyright © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adapted with permission from [103]. Copyright © 2013 Elsevier B.V.
Adapted with permission from [104]. Copyright © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproduced with permission from [121]. Copyright © The Royal Society of Chemistry 2015.
Reproduced with permission from [123]. Copyright © The Royal Society of Chemistry 2015.
Reproduced with permission from [130]. Copyright © 2015 Macmillan Publishers Limited.
Adapted with permission from [131]. Copyright © The Royal Society of Chemistry 2012.