Citation: Zhang Jian-Yong, Zeng Li-Hua, Feng Juan. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers[J]. Chinese Chemical Letters, ;2017, 28(2): 168-183. doi: 10.1016/j.cclet.2016.07.015 shu

Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers

  • Corresponding author: Zhang Jian-Yong, zhjyong@mail.sysu.edu.cn
  • Received Date: 6 June 2016
    Revised Date: 29 June 2016
    Accepted Date: 7 July 2016
    Available Online: 18 February 2016

Figures(26)

  • Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials. This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules. First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding. Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators. Dynamic covalent bonding can be involved to form low molecular weight gelators. Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators. Two catalogues of gels show different properties arising from their different structures. This review aims to illustrate the structure-property relationships of these dynamic covalent gels.
  • 加载中
    1. [1]

      K. Almdal, J. Dyre, S. Hvidt, O. Kramer. Towards a phenomenological definition of the term 'gel'[J]. Polym. Gels Netw., 1993,1:5-17. doi: 10.1016/0966-7822(93)90020-I

    2. [2]

      P.J. Flory. Introductory lecture[J]. Faraday Discuss. Chem. Soc., 1974,57:7-18. doi: 10.1039/dc9745700007

    3. [3]

      R.G. Weiss, P. Té rech, Molecular gels, in:R.G. Weiss, P. Té rech (Eds.), Materials With Self-assembled Fibrillar Networks, Springer, Netherlands, 2006, pp. 1-13.

    4. [4]

      J.M. Guenet. Microfibrillar networks:polymer thermoreversible gels vs organogels[J]. Macromol. Symp., 2006,241:45-50. doi: 10.1002/(ISSN)1521-3900

    5. [5]

      E. Dickinson, Structure and rheology of colloidal particle gels:insight from computer simulation, Adv. Colloid Interface Sci. 199-200(2013) 114-127.

    6. [6]

      Z.J. Zhao, J.W.Y. Lam, B.Z. Tang. Self-assembly of organic luminophores with gelation-enhanced emission characteristics[J]. Soft Matter, 2013,9:4564-4579. doi: 10.1039/c3sm27969c

    7. [7]

      J.M. Lehn. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 1988,27:89-112. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      J.M. Lehn. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem. Int. Ed., 1990,29:1304-1319. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      N.M. Sangeetha, U. Maitra. Supramolecular gels:functions and uses[J]. Chem. Soc. Rev., 2005,34:821-836. doi: 10.1039/b417081b

    10. [10]

      P. Dastidar. Supramolecular gelling agents:can they be designed[J]. Chem. Soc. Rev., 2008,37:2699-2715. doi: 10.1039/b807346e

    11. [11]

      E.A. Appel, F. Biedermann, U. Rauwald. Supramolecular cross-linked networks via host-guest complexation with cucurbit[J]. J. Am. Chem. Soc., 2010,132:14251-14260. doi: 10.1021/ja106362w

    12. [12]

      S.Y. Dong, J.Y. Yuan, F.H. Huang, A pillar[5] arene/imidazolium[2] rotaxane:solvent-and thermo-driven molecular motions and supramolecular gel formation, Chem. Sci. 5(2014) 247-252.

    13. [13]

      Y.K. Tian, Y.G. Shi, Z.S. Yang, F. Wang, Responsive supramolecular polymers based on the bis[alkynylplatinum(II)] terpyridine molecular tweezer/arene recognition motif, Angew. Chem. Int. Ed. 53(2014) 6090-6094.

    14. [14]

      J.M. Hu, S.Y. Liu. Engineering responsive polymer building blocks with hostguest molecular recognition for functional applications[J]. Acc. Chem. Res., 2014,47:2084-2095. doi: 10.1021/ar5001007

    15. [15]

      S. Bhattacharjee, S. Bhattacharya. Charge transfer induces formation of stimuliresponsive, chiral, cohesive vesicles-on-α-string that eventually turn into a hydrogel[J]. Chem. Asian J., 2015,10:572-580. doi: 10.1002/asia.201403205

    16. [16]

      A. Das, S. Ghosh. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores[J]. Angew. Chem. Int. Ed., 2014,53:2038-2054. doi: 10.1002/anie.201307756

    17. [17]

      J.F. Xu, Y.Z. Chen, D.Y. Wu. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit[J]. Angew. Chem. Int. Ed., 2013,52:9738-9742. doi: 10.1002/anie.201303496

    18. [18]

      C. Rest, M.J. Mayoral, K. Fucke. Self-assembly and (hydro)gelation triggered by cooperative π-π and unconventional C-H…X hydrogen bonding interactions[J]. Angew. Chem. Int. Ed., 2014,53:700-705. doi: 10.1002/anie.201307806

    19. [19]

      K. Hanabusa, T. Miki, Y. Taguchi, T. Koyama, H. Shirai, Two-component, small molecule gelling agents, J. Chem. Soc. Chem. Commun. (1993) 1382-1384.

    20. [20]

      N.N. Adarsh, D.K. Kumar, P. Dastidar. Composites of N, N'-bis-(pyridyl) ureadicarboxylic acid as new hydrogelators-a crystal engineering approach[J]. Tetrahedron, 2007,63:7386-7396. doi: 10.1016/j.tet.2007.02.005

    21. [21]

      L. Meazza, J.A. Foster, K. Fucke. Halogen-bonding-triggered supramolecular gel formation[J]. Nat. Chem., 2013,5:42-47.

    22. [22]

      J.P. Hill, W.S. Jin, A. Kosaka. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube[J]. Science, 2004,304:1481-1483. doi: 10.1126/science.1097789

    23. [23]

      Y. Feng, Z.T. Liu, J. Liu. Peripherally dimethyl isophthalate-functionalized poly(benzyl ether) dendrons:a new kind of unprecedented highly efficient organogelators[J]. J. Am. Chem. Soc., 2009,131:7950-7951. doi: 10.1021/ja901501j

    24. [24]

      A.P. Sivadas, N.S.S. Kumar, D.D. Prabhu. Supergelation via purely aromatic π-π driven self-assembly of pseudodiscotic oxadiazole mesogens[J]. J. Am. Chem. Soc., 2014,136:5416-5423. doi: 10.1021/ja500607d

    25. [25]

      T. Naota, H. Koori. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids[J]. J. Am. Chem. Soc., 2005,127:9324-9325. doi: 10.1021/ja050809h

    26. [26]

      D.J. Abdallah, S.A. Sirchio, R.G. Weiss. Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state[J]. Langmuir, 2000,16:7558-7561. doi: 10.1021/la000730k

    27. [27]

      L.Y. Gao, B. Zheng, Y. Yao, F.H. Huang, Responsive reverse giant vesicles and gel from self-organization of a bolaamphiphilic pillar[5] arene, Soft Matter 9(2013) 7314-7319.

    28. [28]

      X.Z. Yan, S.J. Li, T.R. Cook. Hierarchical self-assembly:well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles[J]. J. Am. Chem. Soc., 2013,135:14036-14039. doi: 10.1021/ja406877b

    29. [29]

      S.Y. Dong, Y. Luo, X.Z. Yan, et al., A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition, Angew. Chem. Int. Ed. 50(2011) 1905-1909.

    30. [30]

      S.Y. Dong, B. Zheng, D.H. Xu, et al., A crown ether appended super gelator with multiple stimulus responsiveness, Adv. Mater. 24(2012) 3191-3195.

    31. [31]

      Z.H. Qi, C.A. Schalley. Exploring macrocycles in functional supramolecular gels:from stimuli responsiveness to systems chemistry[J]. Acc. Chem. Res., 2014,47:2222-2233. doi: 10.1021/ar500193z

    32. [32]

      X.Z. Yan, D.H. Xu, X.D. Chi, et al., A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly, Adv. Mater. 24(2012) 362-369.

    33. [33]

      X.Z. Yan, T.R. Cook, J.B. Pollock. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions[J]. J. Am. Chem. Soc., 2014,136:4460-4463. doi: 10.1021/ja412249k

    34. [34]

      Q.G. Wang, J.L. Mynar, M. Yoshida. High-water-contentmouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010,463:339-343. doi: 10.1038/nature08693

    35. [35]

      L.E. Buerkle, S.J. Rowan. Supramolecular gels formed from multi-component low molecular weight species[J]. Chem. Soc. Rev., 2012,41:6089-6102. doi: 10.1039/c2cs35106d

    36. [36]

      J. Raeburn, D.J. Adams. Multicomponent low molecular weight gelators[J]. Chem. Commun., 2015,51:5170-5180. doi: 10.1039/C4CC08626K

    37. [37]

      A.R. Hirst, D.K. Smith. Two-component gel-phase materials-highly tunable selfassembling systems[J]. Chem. Eur. J., 2005,11:5496-5508. doi: 10.1002/(ISSN)1521-3765

    38. [38]

      J.Y. Zhang, C.Y. Su. Metal-organic gels:from discrete metallogelators to coordination polymers[J]. Coord. Chem. Rev., 2013,257:1373-1408. doi: 10.1016/j.ccr.2013.01.005

    39. [39]

      A.Y.Y. Tam, V.W.W. Yam. Recent advances in metallogels[J]. Chem. Soc. Rev., 2013,42:1540-1567. doi: 10.1039/c2cs35354g

    40. [40]

      M.O.M. Piepenbrock, G.O. Lloyd, N. Clarke, J.W. Steed. Metal-and anion-binding supramolecular gels[J]. Chem. Rev., 2010,110:1960-2004. doi: 10.1021/cr9003067

    41. [41]

      R.J. Wojtecki, M.A. Meador, S.J. Rowan. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers[J]. Nat. Mater., 2011,10:14-27. doi: 10.1038/nmat2891

    42. [42]

      J.M. Lehn. Dynamic combinatorial chemistry and virtual combinatorial libraries[J]. Chem. Eur. J., 1999,5:2455-2463. doi: 10.1002/(ISSN)1521-3765

    43. [43]

      P.T. Corbett, J. Leclaire, L. Vial. Dynamic combinatorial chemistry[J]. Chem. Rev., 2006,106:3652-3711. doi: 10.1021/cr020452p

    44. [44]

      S.J. Rowan, S.J. Cantrill, G.R.L. Cousins, J.K.M. Sanders, J.F. Stoddart. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41:898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    45. [45]

      A. Herrmann. Dynamic combinatorial/covalent chemistry:a tool to read, generate and modulate the bioactivity of compounds and compound mixtures[J]. Chem. Soc. Rev., 2014,43:1899-1933. doi: 10.1039/C3CS60336A

    46. [46]

      R.A.R. Hunta, S. Otto. Dynamic combinatorial libraries:new opportunities in systems chemistry[J]. Chem. Commun., 2011,47:847-858. doi: 10.1039/C0CC03759A

    47. [47]

      E. Moulin, G. Cormos, N. Giuseppone. Dynamic combinatorial chemistry as a tool for the design of functional materials and devices[J]. Chem. Soc. Rev., 2012,41:1031-1049. doi: 10.1039/C1CS15185A

    48. [48]

      J.W. Li, P. Nowak, S. Otto. Dynamic combinatorial libraries:from exploring molecular recognition to systems chemistry[J]. J. Am. Chem. Soc., 2013,135:9222-9239. doi: 10.1021/ja402586c

    49. [49]

      D. Beaudoin, T. Maris, J.D. Wuest. Constructing monocrystalline covalent organic networks by polymerization[J]. Nat. Chem., 2013,5:830-834. doi: 10.1038/nchem.1730

    50. [50]

      P. Terech, R.G. Weiss. Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chem. Rev., 1997,97:3133-3160. doi: 10.1021/cr9700282

    51. [51]

      L.A. Estroff, A.D. Hamilton. Water gelation by small organic molecules[J]. Chem. Rev., 2004,104:1201-1218. doi: 10.1021/cr0302049

    52. [52]

      A.R. Hirst, B. Escuder, J.F. Miravet, D.K. Smith. High-tech applications of selfassembling supramolecular nanostructured gel-phase materials:from regenerative medicine to electronic devices[J]. Angew. Chem. Int. Ed., 2008,47:8002-8018. doi: 10.1002/anie.v47:42

    53. [53]

      S.S. Babu, V.K. Praveen, A. Ajayaghosh. Functional π-gelators and their applications[J]. Chem. Rev., 2014,114:1973-2129. doi: 10.1021/cr400195e

    54. [54]

      G.C. Yu, X.Z. Yan, C.Y. Han, F.H. Huang. Characterization of supramolecular gels[J]. Chem. Soc. Rev., 2013,42:6697-6722. doi: 10.1039/c3cs60080g

    55. [55]

      T. Tu, W.W. Fang, Z.M. Sun. Visual-size molecular recognition based on gels[J]. Adv. Mater., 2013,25:5304-5313. doi: 10.1002/adma.201301914

    56. [56]

      M. Suzuki, K. Hanabusa. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly[J]. Chem. Soc. Rev., 2010,39:455-463. doi: 10.1039/B910604A

    57. [57]

      C.J. Kloxin, C.N. Bowman. Covalent adaptable networks:smart, reconfigurable and responsive network systems[J]. Chem. Soc. Rev., 2013,42:7161-7173. doi: 10.1039/C3CS60046G

    58. [58]

      H.Y. Wang, S.C. Heilshorn. Adaptable hydrogel networks with reversible linkages for tissue engineering[J]. Adv. Mater., 2015,27:3717-3736. doi: 10.1002/adma.v27.25

    59. [59]

      Y.H. Jin, C. Yu, R.J. Denman, W. Zhang. Recent advances in dynamic covalent chemistry[J]. Chem. Soc. Rev., 2013,42:6634-6654. doi: 10.1039/c3cs60044k

    60. [60]

      C.D. Meyer, C.S. Joiner, J.F. Stoddart. Template-directed synthesis employing reversible imine bond formation[J]. Chem. Soc. Rev., 2007,36:1705-1723. doi: 10.1039/b513441m

    61. [61]

      M.L.C. Quan, D.J. Cram. Constrictive binding of large guests by a hemicarcerand containing four portals[J]. J. Am. Chem. Soc., 1991,113:2754-2755. doi: 10.1021/ja00007a060

    62. [62]

      T.T. Tidwell. Hugo (Ugo) schiff, schiff Bases, and a century of β-lactam synthesis[J]. Angew. Chem. Int. Ed., 2008,47:1016-1020. doi: 10.1002/(ISSN)1521-3773

    63. [63]

      M.E. Belowich, J.F. Stoddart. Dynamic imine chemistry[J]. Chem. Soc. Rev., 2012,41:2003-2024. doi: 10.1039/c2cs15305j

    64. [64]

      M. Ciaccia, S.D. Stefano. Mechanisms of imine exchange reactions in organic solvents[J]. Org. Biomol. Chem., 2015,13:646-654. doi: 10.1039/C4OB02110J

    65. [65]

      S. Yamada, Advancement in stereochemical aspects of schiff base metal complexes, Coord. Chem. Rev. 190-192(1999) 537-555.

    66. [66]

      M. Rezaeivala, H. Keypour. Schiff base and non-schiff base macrocyclic ligands and complexes incorporating the pyridine moiety-the first 50 years[J]. Coord. Chem. Rev., 2014,280:203-253. doi: 10.1016/j.ccr.2014.06.007

    67. [67]

      H. Vardhan, A. Mehta, I. Nath, F. Verpoort. Dynamic imine chemistry in metal-organic polyhedra[J]. RSC Adv., 2015,5:67011-67030. doi: 10.1039/C5RA10801B

    68. [68]

      A. Dirksen, S. Dirksen, T.M. Hackeng, P.E. Dawson. Nucleophilic catalysis of hydrazone formation and transimination:implications for dynamic covalent chemistry[J]. J. Am. Chem. Soc., 2006,128:15602-15603. doi: 10.1021/ja067189k

    69. [69]

      A. Sanyal. Diels-Alder cycloaddition-cycloreversion:a powerful combo in materials design[J]. Macromol. Chem. Phys., 2010,211:1417-1425. doi: 10.1002/macp.v211:13

    70. [70]

      X.X. Chen, M.A. Dam, K. Ono, et al., A thermally re-mendable cross-linked polymeric material, Science 295(2002) 1698-1702.

    71. [71]

      S.D. Bergman, F. Wudl. Mendable polymers[J]. J. Mater. Chem., 2008,18:41-62. doi: 10.1039/B713953P

    72. [72]

      B.J. Adzima, H.A. Aguirre, C.J. Kloxin, T.F. Scott, C.N. Bowman. Rheological, chemical analysis of reverse gelation in a covalently cross-linked diels-alder polymer network[J]. Macromolecules, 2008,41:9112-9117. doi: 10.1021/ma801863d

    73. [73]

      A.J. Inglis, L. Nebhani, O. Altintas, F.G. Schmidt, C. Barner-Kowollik. Rapid bonding/debonding on demand:reversibly cross-linked functional polymers via diels-alder chemistry[J]. Macromolecules, 2010,43:5515-5520. doi: 10.1021/ma100945b

    74. [74]

      J.Q. Zhang, Y. Niu, C.L. Huang. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction[J]. Polym. Chem., 2012,3:1390-1393. doi: 10.1039/c2py20028g

    75. [75]

      G.C. Vougioukalakis, R.H. Grubbs. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chem. Rev., 2010,110:1746-1787. doi: 10.1021/cr9002424

    76. [76]

      R.R. Schrock. Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes[J]. J. Mol. Catal. A:Chem., 2004,213:21-30. doi: 10.1016/j.molcata.2003.10.060

    77. [77]

      Y.X. Lu, F. Tournilhac, L. Leibler, Z.B. Guan. Making insoluble polymer networks malleable via olefin metathesis[J]. J. Am. Chem. Soc., 2012,134:8424-8427. doi: 10.1021/ja303356z

    78. [78]

      K.D. Okochi, Y.H. Jin, W. Zhang. Highly efficient one-pot synthesis of heterosequenced shape-persistent macrocycles through orthogonal dynamic covalent chemistry (ODCC)[J]. Chem. Commun., 2013,49:4418-4420. doi: 10.1039/C2CC33078D

    79. [79]

      M.J. Marsella, H.D. Maynard, R.H. Grubbs. Template-directed ring-closing metathesis:synthesis and polymerization of unsaturated crown ether analogs[J]. Angew. Chem. Int. Ed., 1997,36:1101-1103. doi: 10.1002/(ISSN)1521-3773

    80. [80]

      H. Otsuka, T. Muta, M. Sakada, T. Maeda, A. Takahara, Scrambling reaction between polymers prepared by step-growth and chain-growth polymerizations:macromolecular cross-metathesis between 1, 4-polybutadiene and olefin-containing polyester, Chem. Commun. (2009) 1073-1075.

    81. [81]

      Y.H. Jin, A.B. Zhang, Y.S. Huang, W. Zhang. Shape-persistent arylenevinylene macrocycles (AVMs) prepared via acyclic diene metathesis macrocyclization (ADMAC)[J]. Chem. Commun., 2010,46:8258-8260. doi: 10.1039/c0cc02941f

    82. [82]

      R. Nishiyabu, Y. Kubo, T.D. James, J.S. Fossey. Boronic acid building blocks:tools for self assembly[J]. Chem. Commun., 2011,47:1124-1150. doi: 10.1039/C0CC02921A

    83. [83]

      D.G. Hall, Rhodium-catalyzed additions of boronic acids to alkenes and carbonyl compounds, in:D.G. Hall (Ed.), Boronic Acids:Preparation and Applications in Organic Synthesis and Medicine, Wiley-VCH, Weinheim, 2005, pp. 1-100.

    84. [84]

      D. Witt. Recent developments in disulfide bond formation[J]. Synthesis, 2008,16:2491-2509.

    85. [85]

      H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, A dynamic covalent polymer driven by disulfide metathesis under photoirradiation, Chem. Commun. 46(2010) 1150-1152.

    86. [86]

      T. Maeda, H. Otsuka, A. Takahara. Dynamic covalent polymers:reorganizable polymers with dynamic covalent bonds[J]. Prog. Polym. Sci., 2009,34:581-604. doi: 10.1016/j.progpolymsci.2009.03.001

    87. [87]

      T.F. Scott, A.D. Schneider, W.D. Cook, C.N. Bowman. Photoinduced plasticity in cross-linked[J]. Science, 2005,308:1615-1617. doi: 10.1126/science.1110505

    88. [88]

      D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler. Silica-like malleable materials from permanent organic networks[J]. Science, 2011,334:965-968. doi: 10.1126/science.1212648

    89. [89]

      S.D. Stefano, R. Cacciapaglia, L. Mandolini. Supramolecular control of reactivity and catalysis-effective molarities of recognition-mediated bimolecular reactions[J]. Eur. J. Org. Chem., 2014,2014:7304-7315. doi: 10.1002/ejoc.v2014.33

    90. [90]

      K.N. Long. The mechanics of network polymers with thermally reversible linkages[J]. J. Mech. Phys. Solids, 2014,63:386-411. doi: 10.1016/j.jmps.2013.08.017

    91. [91]

      Z. Wei, J.H. Yang, J.X. Zhou. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chem. Soc. Rev., 2014,43:8114-8131. doi: 10.1039/C4CS00219A

    92. [92]

      N. Sreenivasachary, J.M. Lehn. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation[J]. Proc. Natl. Acad. Sci. U. S. A., 2005,102:5938-5943. doi: 10.1073/pnas.0501663102

    93. [93]

      J.S. Foster, J.M. Z·urek, N.M.S. Almeida. Gelation landscape engineering using a multi-reaction supramolecular hydrogelator system[J]. J. Am. Chem. Soc., 2015,137:14236-14239. doi: 10.1021/jacs.5b06988

    94. [94]

      J. Boekhoven, J.M. Poolman, C. Maity. Catalytic control over supramolecular gel formation[J]. Nat. Chem., 2013,5:433-437. doi: 10.1038/nchem.1617

    95. [95]

      R. Eelkema, J.H. van Esch. Catalytic control over the formation of supramolecular materials[J]. Org. Biomol. Chem., 2014,12:6292-6296. doi: 10.1039/C4OB01108B

    96. [96]

      J.M. Poolman, C. Maity, J. Boekhoven, et al., A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels, J. Mater. Chem. B 4(2016) 852-858.

    97. [97]

      H. Qian, I. Aprahamian. An emissive and pH switchable hydrazone-based hydrogel[J]. Chem. Commun., 2015,51:11158-11161. doi: 10.1039/C5CC03007B

    98. [98]

      C.B. Minkenberg, L. Florusse, R. Eelkema, G.J.M. Kope, J.H. van Esch. Triggered self-assembly of simple dynamic covalent surfactants[J]. J. Am. Chem. Soc., 2009,131:11274-11275. doi: 10.1021/ja902808q

    99. [99]

      G.T. Wang, J.B. Lin, X.K. Jiang, Z.T. Li. Cholesterol-appended aromatic imine organogelators:a case study of gelation-driven component selection[J]. Langmuir, 2009,25:8414-8418. doi: 10.1021/la804188z

    100. [100]

      K. Lv, L. Qin, X.F. Wang, L. Zhang, M.H. Liu, A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding, Phys. Chem. Chem. Phys. 15(2013) 20197-20202.

    101. [101]

      Q.X. Jin, L. Zhang, X.F. Zhu, P.F. Duan, M.H. Liu. Amphiphilic schiff base organogels:metal-ion-mediated chiral twists and chiral recognition[J]. Chem. Eur. J., 2012,18:4916-4922. doi: 10.1002/chem.v18.16

    102. [102]

      H. Bunzen, E. Nonappa, S. Kalenius, E. Hietala. Kolehmainen, subcomponent selfassembly:a quick way to new metallogels[J]. Chem. Eur. J., 2013,19:12978-12981. doi: 10.1002/chem.v19.39

    103. [103]

      L.B. Zang, H.X. Shang, D.Y. Wei, S.M. Jiang, A multi-stimuli-responsive organogel based on salicylidene Schiff base, Sens. Actuators B 185(2013) 389-397.

    104. [104]

      J.W. Li, J.M.A. Carnall, M.C.A. Stuart, S. Otto. Hydrogel formation upon photoinduced covalent capture of macrocycle stacks from dynamic combinatorial libraries[J]. Angew. Chem. Int. Ed., 2011,50:8384-8386. doi: 10.1002/anie.v50.36

    105. [105]

      L.J. Prins, P. Scrimin. Covalent capture:merging covalent and noncovalent synthesis[J]. Angew. Chem. Int. Ed., 2009,48:2288-2306. doi: 10.1002/anie.200803583

    106. [106]

      K. Sada, M. Takeuchi, N. Fujita, M. Numata, S. Shinkai. Post-polymerization of preorganized assemblies for creating shape-controlled functional materials[J]. Chem. Soc. Rev., 2007,36:415-435. doi: 10.1039/B603555H

    107. [107]

      I.A. Coates, D.K. Smith. Controlled self-assembly-synthetic tunability and covalent capture of nanoscale gel morphologies[J]. Chem. Eur. J., 2009,15:6340-6344. doi: 10.1002/chem.v15:26

    108. [108]

      C.H. Ren, Z.J. Song, W.T. Zheng. Disulfide bond as a cleavable linker for molecular self-assembly and hydrogelation[J]. Chem. Commun., 2011,47:1619-1621. doi: 10.1039/C0CC04135A

    109. [109]

      Y. Shi, J.Y. Wang, H.M. Wang, et al., Glutathione-triggered formation of a fmocprotected short peptide-based supramolecular hydrogel, PLOS ONE 9(2014) e106968.

    110. [110]

      R.J. Williams, A.M. Smith, R. Collins. Enzyme-assisted self-assembly under thermodynamic control[J]. Nat. Nanotechnol., 2009,4:19-24. doi: 10.1038/nnano.2008.378

    111. [111]

      S. Toledano, R.J. Williams, V. Jayawarna, R.V. Ulijn. Enzyme-triggered selfassembly of peptide hydrogels via reversed hydrolysis[J]. J. Am. Chem. Soc., 2006,128:1070-1071. doi: 10.1021/ja056549l

    112. [112]

      P. Kaur, J.T. Hupp, S.T. Nguyen. Porous organic polymers in catalysis:opportunities and challenges[J]. ACS Catal., 2011,1:819-835. doi: 10.1021/cs200131g

    113. [113]

      Y.G. Zhang, S.N. Riduan. Functional porous organic polymers for heterogeneous catalysis[J]. Chem. Soc. Rev., 2012,41:2083-2094. doi: 10.1039/C1CS15227K

    114. [114]

      M.A. Khalily, M. Goktas, M.O. Guler. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking[J]. Org. Biomol. Chem., 2015,13:1983-1987. doi: 10.1039/C4OB02217C

    115. [115]

      N.B. McKeown, P.M. Budd. Exploitation of intrinsic microporosity in polymerbased materials[J]. Macromolecules, 2010,43:5163-5176. doi: 10.1021/ma1006396

    116. [116]

      A.P. Côté, A.I. Benin, N.W. Ockwig. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310:1166-1170. doi: 10.1126/science.1120411

    117. [117]

      S.Y. Ding, W. Wang. Covalent organic frameworks (COFs):from design to applications[J]. Chem. Soc. Rev., 2013,42:548-568. doi: 10.1039/C2CS35072F

    118. [118]

      X. de Hatten, N. Bell, N. Yufa, G. Christmann, J.R. Nitschke, A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise, J. Am. Chem. Soc. 133(2011) 3158-3164.

    119. [119]

      J.A. Berrocal, L.M. Pitet, M.M.L. Nieuwenhuizen, et al., Ring-opening metathesis polymerization of a diolefinic[2]-catenane-copper(I) complex:an easy route to polycatenanes, Macromolecules 48(2015) 1358-1363.

    120. [120]

      J.A. Berrocal, S. Albano, L. Mandolini, S.D. Stefano, A CuI-based metallo-supramolecular gel-like material built from a library of oligomeric ligands featuring exotopic 1, 10-phenanthroline units, Eur. J. Org. Chem. 2015(2015) 7504-7510.

    121. [121]

      J.Y. Zhang, L.P. Liu, H.L. Liu. Highly porous aerogels based on imine chemistry:syntheses and sorption properties[J]. J. Mater. Chem. A, 2015,3:10990-10998. doi: 10.1039/C5TA00557D

    122. [122]

      W.J. Luo, Y.X. Zhu, J.Y. Zhang, et al., A dynamic covalent imine gel as a luminescent sensor, Chem. Commun. 50(2014) 11942-11945.

    123. [123]

      H.L. Liu, J. Feng, J.Y. Zhang, et al., A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry, Chem. Sci. 6(2015) 2292-2296.

    124. [124]

      P.A. Kerneghan, S.D. Halperin, D.L. Bryce, K.E. Maly. Postsynthetic modification of an imine-based microporous organic network[J]. Can. J. Chem., 2011,89:577-582. doi: 10.1139/v11-014

    125. [125]

      F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, et al., A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131(2009) 4570-4571.

    126. [126]

      L.H. Zeng, P.S. Liao, H.L. Liu. Impregnation of metal ions into porphyrinbased imine gels to modulate guest uptake and to assemble a catalytic microfluidic reactor[J]. J. Mater. Chem. A, 2016,4:8328-8336. doi: 10.1039/C6TA01035K

    127. [127]

      J.D. Luo, Z.L. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741.

    128. [128]

      Z.J. Zhao, J.W.Y. Lam, B.Z. Tang. Tetraphenylethene:a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes[J]. J. Mater. Chem., 2012,22:23726-23740. doi: 10.1039/c2jm31949g

    129. [129]

      K. Thiel, R. Zehbe, J. Roeser, et al., A polymer analogous reaction for the formation of imidazolium and NHC based porous polymernetworks, Polym. Chem. 4(2013) 1848-1856.

    130. [130]

      J.H. Lee, J. Park, J.W. Park, et al., Supramolecular gels with high strength by tuning of calix[4] arene-derived networks, Nat. Commun. 6(2015) 6650.

    131. [131]

      C.B. Minkenberg, W.E. Hendriksen, F. Li. Dynamic covalent assembly of stimuli responsive vesicle gels[J]. Chem. Commun., 2012,48:9837-9839. doi: 10.1039/c2cc34863b

    132. [132]

      C.B. Minkenberg, F. Li, P. van Rijn. Responsive vesicles from dynamic covalent surfactants[J]. Angew. Chem. Int. Ed., 2011,50:3421-3424. doi: 10.1002/anie.201007401

    133. [133]

      H.Z. Ying, Y.F. Zhang, J.J. Cheng. Dynamic urea bond for the design of reversible and self-healing polymers[J]. Nat. Commun., 2014,53218.

    134. [134]

      M. Hutchby, C.E. Houlden, J.G. Ford. Hindered ureas as masked isocyanates:facile carbamoylation of nucleophiles under neutral conditions[J]. Angew. Chem. Int. Ed., 2009,48:8721-8724. doi: 10.1002/anie.v48:46

    135. [135]

      E. Delebecq, J.P. Pascault, B. Boutevin, F. Ganachaud. On the versatility of urethane/urea bonds:reversibility, blocked isocyanate, and non-isocyanate polyurethane[J]. Chem. Rev., 2013,113:80-118. doi: 10.1021/cr300195n

    136. [136]

      S.Y. Moon, J.S. Bae, E. Jeon, J.W. Park. Organic sol-gel synthesis:solution-processable microporous organic networks[J]. Angew. Chem. Int. Ed., 2010,49:9504-9508. doi: 10.1002/anie.201002609

    137. [137]

      S.Y. Moon, E. Jeon, J.S. Bae, M. Byeona, J.W. Park. Polyurea networks via organic sol-gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide[J]. Polym. Chem., 2014,5:1124-1131. doi: 10.1039/c3py01593a

    138. [138]

      S.Y. Moon, H.R. Mo, M.K. Ahn. Organic sol-gel synthesis of microporous molecular networks containing spirobifluorene and tetraphenylmethane nodes[J]. J. Polym. Sci. A:Polym. Chem., 2013,51:1758-1766. doi: 10.1002/pola.26552

    139. [139]

      S. Bhunia, N. Chatterjee, S. Das, K.D. Saha, A. Bhaumik. Porous polyurea network showing aggregation induced white light emission, applications as biosensor and scaffold for drug delivery[J]. ACS Appl. Mater. Interfaces, 2014,6:22569-22576. doi: 10.1021/am5066859

    140. [140]

      A. Wilson, G. Gasparini, S. Matile. Functional systems with orthogonal dynamic covalent bonds[J]. Chem. Soc. Rev., 2014,43:1948-1962. doi: 10.1039/C3CS60342C

  • 加载中
    1. [1]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    2. [2]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    3. [3]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    4. [4]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    5. [5]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    6. [6]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    7. [7]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    8. [8]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    9. [9]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    10. [10]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    11. [11]

      Xi Zhou Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464

    12. [12]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    13. [13]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    14. [14]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    15. [15]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    16. [16]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    19. [19]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    20. [20]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

Metrics
  • PDF Downloads(1)
  • Abstract views(747)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return