Citation: Xie Yan, Han Liang, Ge Cheng-Sheng, Cui Yan-Hong, Gao Jian-Rong. Novel organic dye sensitizers containing fluorenyl and biphenyl moieties for solar cells[J]. Chinese Chemical Letters, ;2017, 28(2): 285-292. doi: 10.1016/j.cclet.2016.06.042 shu

Novel organic dye sensitizers containing fluorenyl and biphenyl moieties for solar cells

  • Corresponding author: Gao Jian-Rong, gjrarticle@163.com
  • Received Date: 3 May 2016
    Revised Date: 3 June 2016
    Accepted Date: 13 June 2016
    Available Online: 2 February 2016

Figures(8)

  • Three novel triarylamine dyes (AFL1-AFL3) containing fluorenyl and the biphenyl moieties have been designed and synthesized for application in dye-sensitized solar cells. The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges. The dye with a furan linker exhibited a higher open-circuit voltage (VOC) and monochromatic incident photon-to-current conversion efficiency (IPCE) compared to thiophene and benzene linker. Thus, AFL3 containing a furan linker exhibited the maximum overall conversion efficiency of 5.81% (VOC=760 mV, JSC=11.36 mA cm-2 and ff=0.68) under standard global AM 1.5 G solar condition.
  • 加载中
    1. [1]

      A. Mishra, M.K.R. Fischer, P. Ba üerle. Metal-free organic dyes for dye-sensitized solar cells:from structure:property relationships to design rules[J]. Anew. Chem. lnt. Ed. Engl., 2009,48:2474-2499.  

    2. [2]

      R.K. Kanaparthi, J. Kandhadi, L. Giribabu. Metal-free organic dyes for dye-sensitized solar cells:recent advances[J]. Tetrahedron, 2012,68:8383-8393. doi: 10.1016/j.tet.2012.06.064

    3. [3]

      S. Mathew, A. Yella, P. Gao. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nat. Chem., 2014,6:242-247. doi: 10.1038/nchem.1861

    4. [4]

      Z. Ning, H. Tian, Triarylamine:a promising core unit for efficient photovoltaic materials, Chem. Commun. (2009) 5483-5495.

    5. [5]

      S.B. Wang, J.C. Guo, L. He. Influence of thiophene and benzene unit in triphenylamine dyes on the performance of dye-sensitized solar cells[J]. Synth. Met., 2013,168:1-8. doi: 10.1016/j.synthmet.2013.02.010

    6. [6]

      L. Alibabaei, J.H. Kim, M. Wang. Molecular design of metal-free D-π-A substituted sensitizers for dye-sensitized solar cells[J]. Energy Environ. Sci., 2010,3:1757-1764. doi: 10.1039/c0ee00218f

    7. [7]

      K. Hara, Z.S. Wang, Y. Cui, A. Furube, N. Koumura. Long-term stability of organicdye-sensitized solar cells based on an alkyl-functionalized carbazole dye[J]. Energy Environ. Sci., 2009,2:1109-1114. doi: 10.1039/b907486d

    8. [8]

      T. Horiuchi, H. Miura, K. Sumioka, S. Uchida. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes[J]. J. Am. Chem. Soc., 2004,126:12218-12219. doi: 10.1021/ja0488277

    9. [9]

      W.J. Wu, J.B. Yang, J.L. Hua. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units[J]. J. Mater. Chem., 2010,20:1772-1779. doi: 10.1039/b918282a

    10. [10]

      H.N. Tian, X.C. Yang, R.K. Chen, A. Hagfeldt, L.C. Sun. A metal-free "black dye" for panchromatic dye-sensitized solar cells[J]. Energy Environ. Sci., 2009,2:674-677. doi: 10.1039/b901238a

    11. [11]

      Y. Numata, I. Ashraful, Y. Shirai, L.Y. Han. Preparation of donor-acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application[J]. Chem. Commun., 2011,47:6159-6161. doi: 10.1039/c1cc11130b

    12. [12]

      Y.Z. Wu, M. Marszalek, S.M. Zakeeruddin. High-conversion-efficiency organic dye-sensitized solar cells:molecular engineering on D-A-π-A featured organic indoline dyes[J]. Energy Environ. Sci., 2012,5:8261-8272. doi: 10.1039/c2ee22108j

    13. [13]

      S. Namuangruk, R. Fukuda, M. Ehara. D-D-π-A-type organic dyes for dyesensitized solar cells with a potential for direct electron injection and a high extinction coefficient:synthesis, characterization, and theoretical investigation[J]. J. Phys. Chem. C, 2012,116:25653-25663. doi: 10.1021/jp304489t

    14. [14]

      C.J. Zhong, J.R. Gao, Y.H. Cui, T. Li, L. Han. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells[J]. J. Power Sources, 2015,273:831-838. doi: 10.1016/j.jpowsour.2014.09.163

    15. [15]

      W.X. Gao, M. Liang, Y.L. Tan. New triarylamine sensitizers for high efficiency dye-sensitized solar cells:recombination kinetics of cobalt (III) complexes at titania/dye interface[J]. J. Power Sources, 2015,283:260-269. doi: 10.1016/j.jpowsour.2015.02.121

    16. [16]

      X.Z. Wang, J. Yang, H. Yu. A benzothiazole-cyclopentadithiophene bridged D-A-π-A sensitizer with enhanced light absorption for high efficiency dyesensitized solar cells[J]. Chem. Commun., 2014,50:3965-3968. doi: 10.1039/c4cc00577e

    17. [17]

      W.D. Zeng, Y.M. Cao, Y. Bai. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks[J]. Chem. Mater., 2010,22:1915-1925. doi: 10.1021/cm9036988

    18. [18]

      K.S.V. Gupta, S.P. Singh, A. Islam, L. Han, M. Chandrasekharam. Simple fluorene based triarylamine metal-free organic sensitizers[J]. Electrochimi. Acta, 2015,174:581-587. doi: 10.1016/j.electacta.2015.05.158

    19. [19]

      K.R.J. Thomas, N. Kapoor, C.P. Lee, K.C. Ho. Organic dyes containing pyrenylaminebased cascade donor systems with different aromatic π linkers for dye-sensitized solar cells:optical, electrochemical, and device characteristics[J]. Chem. Asian J., 2012,7:738-750. doi: 10.1002/asia.v7.4

    20. [20]

      F. Wu, J.L. Liu, L.T.L. Lee. Dye-sensitized solar cells based on functionalized truxene structure[J]. Chin. Chem. Lett., 2015,26:955-962. doi: 10.1016/j.cclet.2015.03.008

    21. [21]

      S.Y. Qu, B. Wang, F.L. Guo. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells[J]. Dyes Pigm., 2012,92:1384-1393. doi: 10.1016/j.dyepig.2011.09.009

    22. [22]

      J.X. He, F.L. Guo, X. Li. New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells[J]. Chem. Eur. J., 2012,18:7903-7915. doi: 10.1002/chem.201103702

    23. [23]

      P. Shen, X.P. Liu, S.H. Jiang. Effects of aromatic π-conjugated bridges on optical and photovoltaic properties of N, N-diphenylhydrazone-based metal-free organic dyes[J]. Org. Electron., 2011,12:1992-2002. doi: 10.1016/j.orgel.2011.08.010

    24. [24]

      J.B. Yang, F.L. Guo, J.L. Hua. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer[J]. J. Mater. Chem., 2012,22:24356-24365. doi: 10.1039/c2jm31929b

    25. [25]

      J.X. He, J.L. Hua, G.X. Hu. Organic dyes incorporating a thiophene or furan moiety for efficient dye-sensitized solar cells[J]. Dyes Pigm., 2014,104:75-82. doi: 10.1016/j.dyepig.2013.12.025

    26. [26]

      M. Liang, W. Xu, F.S. Cai. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells[J]. J. Phys. Chem. C, 2007,111:4465-4472. doi: 10.1021/jp067930a

    27. [27]

      K.R.J. Thomas, Y.C. Hsu, J.T. Lin. 2, 3-disubstituted thiophene-based organic dyes for solar cells[J]. Chem. Mater., 2008,20:1830-1840. doi: 10.1021/cm702631r

    28. [28]

      Z.S. Wang, K. Hara, Y. Dan-oh. Photophysical and (photo) electrochemical properties of a coumarin dye[J]. J. Phys. Chem. B, 2005,109:3907-3914. doi: 10.1021/jp044851v

    29. [29]

      R.G. Parr, W.T. Yang. Density-functional theory electronic structure of molecules[J]. Annu. Rev. Phys. Chem., 1995,46:701-728. doi: 10.1146/annurev.pc.46.100195.003413

    30. [30]

      Z.M. Wu, C.Y. Rong, T. Lu, P.W. Ayers, S.B. Liu. Density functional reactivity theory study of SN2 reactions from the information-theoretic perspective[J]. Phys. Chem. Chem. Phys., 2015,17:27052-27061. doi: 10.1039/C5CP04442A

    31. [31]

      S. Chaurasia, Y.C. Chen, H.H. Chou, Y.S. Wen, J.T. Lin. Coplanarindenofluorene-based organic dyes for dye-sensitized solar cells[J]. Tetrahedron, 2012,68:7755-7762. doi: 10.1016/j.tet.2012.07.045

    32. [32]

      S.Y. Cai, X.H. Hu, J.L. Han. Efficient organic dyes containing dibenzo heterocycles as conjugated linker part for dye-sensitized solar cells[J]. Tetrahedron, 2013,69:1970-1977. doi: 10.1016/j.tet.2012.12.074

    33. [33]

      L. Han, X.Y. Zu, Y.H. Cui. Novel D-A-π-A carbazole dyes containing benzothiadiazole chromophores for dye-sensitized solar cells[J]. Org. Electron., 2014,15:1536-1544. doi: 10.1016/j.orgel.2014.04.016

    34. [34]

      K. Hara, M. Kurashige, Y. Dan-oh. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells[J]. New J. Chem., 2003,27:783-785. doi: 10.1039/b300694h

  • 加载中
    1. [1]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    2. [2]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    6. [6]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    7. [7]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    8. [8]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    9. [9]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    10. [10]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    11. [11]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    12. [12]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    13. [13]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    14. [14]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    15. [15]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    16. [16]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    17. [17]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    18. [18]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    19. [19]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    20. [20]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

Metrics
  • PDF Downloads(1)
  • Abstract views(645)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return