Citation: Jia Ying, Shi Ying, Wang Peng, Zhang Jian-Ping. Triplet excitation dynamics of β-carotene studied in three solvents by ns flash photolysis spectroscopy[J]. Chinese Chemical Letters, ;2017, 28(1): 83-88. doi: 10.1016/j.cclet.2016.05.032 shu

Triplet excitation dynamics of β-carotene studied in three solvents by ns flash photolysis spectroscopy

  • Corresponding author: Wang Peng, wpeng@iccas.ac.cn
  • Received Date: 13 April 2016
    Revised Date: 9 May 2016
    Accepted Date: 23 May 2016
    Available Online: 11 January 2016

Figures(4)

  • Upon anthracene-sensitizing, triplet excitation dynamics of β-carotene (β-Car) were studied in n-hexane, in methanol, and in acetonitrile, respectively, by ns flash photolysis spectroscopy. In n-hexane, only the bleaching of the ground state absorption (GSB) and the excitation triplet (3Car*) absorption were observed, and there were no cationic species detected. In both methanol and acetonitrile, similar excitation dynamics were observed, i.e., 3Car* having a similar lifetime to that in n-hexane, and the immediate generation of the cation dehydrodimer (#[Car]2+) upon excitation following transformation into the radical cation Car·+, since Car·+ has much longer lifetime in acetonitrile than in methanol. The results prove that both solvent and carotenoid structure determine the triplet excitation mechanism. 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
  • 加载中
    1. [1]

      Frank H.A., Cogdell R.J.. Carotenoids in photosynthesis[J]. Photochem. Photobiol., 1996,63:257-264. doi: 10.1111/php.1996.63.issue-3

    2. [2]

      Gould S.L., Kodis G., Liddell P.A.. Artificial photosynthetic reaction centers with carotenoid antennas[J]. Tetrahedron, 2006,62:2074-2096. doi: 10.1016/j.tet.2005.06.121

    3. [3]

      Holt N.E., Kennis J.T.M., Fleming G.R.. Femtosecond fluorescence upconversion studies of light harvesting by β-carotene in oxygenic photosynthetic core proteins[J]. J. Phys. Chem. B, 2004,108:19029-19035. doi: 10.1021/jp046893p

    4. [4]

      Telfer A., Rivas J.D.L., Barber J.. β-Carotene within the isolated photosystem Ⅱ reaction centre:photooxidation and irreversible bleaching of this chromophore by oxidised P680[J]. Biochim. Biophys. Acta, 1991,1060:106-114. doi: 10.1016/S0005-2728(05)80125-2

    5. [5]

      Faller P., Pascal A., Rutherford A.W.. b-Carotene redox reactions in photosystem Ⅱ:electron transfer pathway[J]. Biochemistry, 2001,40:6431-6440. doi: 10.1021/bi0026021

    6. [6]

      Farhoosh R., Chynwat V., Gebhard R., Lugtenburg J., Frank H.A.. Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of π-electron conjugation[J]. Photochem. Photobiol., 1997,66:97-104. doi: 10.1111/php.1997.66.issue-1

    7. [7]

      Yasushi K.. New trends in photobiology:structures and functions of carotenoids in photosynthetic systems[J]. J. Photochem. Photobiol. B, 1991,9:265-280. doi: 10.1016/1011-1344(91)80165-E

    8. [8]

      Holt N.E., Zigmantas D., Valkunas L.. Carotenoid cation formation and the regulation of photosynthetic light harvesting[J]. Science, 2005,307:433-436. doi: 10.1126/science.1105833

    9. [9]

      Ahn T.K., Avenson T.J., Ballottari M.. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein[J]. Science, 2008,320:794-797. doi: 10.1126/science.1154800

    10. [10]

      Avenson T.J., Ahn T.K., Zigmantas D.. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna[J]. J. Biol. Chem., 2008,283:3550-3558. doi: 10.1074/jbc.M705645200

    11. [11]

      Avenson T.J., Ahn T.K., Niyogi K.K.. Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex[J]. J. Biol. Chem., 2009,284:2830-2835. doi: 10.1074/jbc.M807192200

    12. [12]

      Holt N.E., Fleming G.R., Niyogi K.K.. Toward an understanding of the mechanism of nonphotochemical quenching in green plants[J]. Biochemistry, 2004,43:8281-8289. doi: 10.1021/bi0494020

    13. [13]

      Frank H.A., Brudvig G.W.. Redox functions of carotenoids in photosynthesis[J]. Biochemistry, 2004,43:8607-8615. doi: 10.1021/bi0492096

    14. [14]

      Hanley J., Deligiannakis Y., Pascal A., Faller P., Rutherford A.W.. Carotenoid oxidation in photosystem Ⅱ[J]. Biochemistry, 1999,38:8189-8195. doi: 10.1021/bi990633u

    15. [15]

      Papagiannakis E., Kennis J.T., van Stokkum I.H.M., Cogdell R.J., van Grondelle R.. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting[J]. Proc. Natl. Acad. Sci. U.S.A., 2002,99:6017-6022. doi: 10.1073/pnas.092626599

    16. [16]

      Gradinaru C.C., Kennis J.T.M., Papagiannakis E.. An unusual pathway of excitation energy deactivation in carotenoids:singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna[J]. Proc. Natl. Acad. Sci. U.S.A., 2001,98:2364-2369. doi: 10.1073/pnas.051501298

    17. [17]

      Zhang J.P., Fujii R., Koyama Y.. The 1Bu-type singlet state of β-carotene as a precursor of the radical cation found in chloroform solution by sub-picosecond time-resolved absorption spectroscopy[J]. Chem. Phys. Lett., 2001,348:235-241. doi: 10.1016/S0009-2614(01)01157-5

    18. [18]

      Han R.M., Wu Y.S., Feng J.. Radical cation generation from singlet and triplet excited states of all-trans-lycopene in chloroform[J]. Photochem. Photobiol., 2004,80:326-333. doi: 10.1562/2004-04-22-RA-147.1

    19. [19]

      Gurzadyan G.G., Steenken S.. Photoionization of β-carotene via electron transfer from excited states to chlorinated hydrocarbon solvents. A picosecond transient absorption study[J]. Phys. Chem. Chem. Phys., 2002,4:2983-2988. doi: 10.1039/b201765b

    20. [20]

      Fujii R., Koyama Y., Mortensen A., Skibsted L.H.. Generation of the radical cation of β-carotene in chloroform via the triplet state as revealed by time-resolved absorption spectroscopy[J]. Chem. Phys. Lett., 2000,326:33-38. doi: 10.1016/S0009-2614(00)00756-9

    21. [21]

      Polívka T., Zigmantas D., Herek J.L.. The carotenoid S1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila:S1 energies, dynamics, and carotenoid radical formation[J]. J. Phys. Chem. B, 2002,106:11016-11025. doi: 10.1021/jp025752p

    22. [22]

      Polívka T., Pullerits T., Frank H.A., Cogdell R.J., Sundström V.. Ultrafast formation of a carotenoid radical in LH2 antenna complexes of purple bacteria[J]. J. Phys. Chem. B, 2004,108:15398-15407. doi: 10.1021/jp0483019

    23. [23]

      Andersson P.O., Gillbro T., Ferguson L., Cogdell R.J.. Absorption spectral shifts of carotenoids related to medium polarizability[J]. Photochem. Photobiol., 1991,54:353-360. doi: 10.1111/php.1991.54.issue-3

    24. [24]

      Macpherson A.N., Gillbro T.. Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene[J]. J. Phys. Chem. A, 1998,102:5049-5058. doi: 10.1021/jp980979z

    25. [25]

      Andersson P.O., Bachilo S.M., Chen R.L., Gillbro T.. Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate[J]. J. Phys. Chem., 1995,99:16199-16209. doi: 10.1021/j100044a002

    26. [26]

      He Z.F., Gosztola D., Deng Y.. Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids[J]. J. Phys. Chem. B, 2000,104:6668-6673. doi: 10.1021/jp0008344

    27. [27]

      Frank H.A., Bautista J.A., Josue J.. Effect of the solvent environment on the spectroscopic properties and dynamics of thelowest excited states ofcarotenoids[J]. J. Phys. Chem. B, 2000,104:4569-4577. doi: 10.1021/jp000079u

    28. [28]

      Akimoto S., Yokono M., Higuchi M.. Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin[J]. Photochem. Photobiol. Sci., 2008,7:1206-1209. doi: 10.1039/b802658k

    29. [29]

      Akimoto S., Yamazaki I., Murakami A., Takaichi S., Mimuro M.. Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile[J]. Chem. Phys. Lett., 2004,390:45-49. doi: 10.1016/j.cplett.2004.03.140

    30. [30]

      Zigmantas D., Hiller R.G., Sharples F.P.. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids[J]. Phys. Chem. Chem. Phys., 2004,6:3009-3016. doi: 10.1039/B315786E

    31. [31]

      Akimoto S., Tomo T., Naitoh Y.. Identification of a new excited state responsible for the in vivo unique absorption band of siphonaxanthin in the green alga Codium fragile[J]. J. Phys. Chem. B, 2007,111:9179-9181.

    32. [32]

      Zigmantas D., Hiller R.G., Yartsev A., Sundström V., Polívka T.. Dynamics of excited states of the carotenoid peridinin in polar solvents:dependence on excitation wavelength, viscosity, and temperature[J]. J. Phys. Chem. B, 2003,107:5339-5348. doi: 10.1021/jp0272318

    33. [33]

      Zigmantas D., Polívka T., Hiller R.G., Yartsev A., Sundström V.. Spectroscopic and dynamic properties of the peridinin lowest singlet excited states[J]. J. Phys. Chem. A, 2001,105:10296-10306. doi: 10.1021/jp010022n

    34. [34]

      Premvardhan L., Sandberg D.J., Fey H.. The charge-transfer properties of the S2 State of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c2 protein (FCP) based on Stark spectroscopy and molecular-orbital theory[J]. J. Phys. Chem. B, 2008,112:11838-11853. doi: 10.1021/jp802689p

    35. [35]

      Bautista J.A., Connors R.E., Raju B.B.. Excited state properties of peridinin:observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids[J]. J. Phys. Chem. B, 1999,103:8751-8758. doi: 10.1021/jp9916135

    36. [36]

      Shima S., Ilagan R.P., Gillespie N.. Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from Amphidinium carterae[J]. J. Phys. Chem. A, 2003,107:8052-8066. doi: 10.1021/jp022648z

    37. [37]

      Polívka T., van Stokkum I.H.M., Zigmantas D.. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae[J]. Biochemistry, 2006,45:8516-8526. doi: 10.1021/bi060265b

    38. [38]

      Polívka T., Sundström V.. Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems[J]. Chem. Rev., 2004,104:2021-2072. doi: 10.1021/cr020674n

    39. [39]

      Yang F., Wang T.H., Wang P.. Zhang, Mechanism of photoinduced formation fucoxanthin radical cation in organic solvents[J]. Chem. J. Chin. Univ., 2010,31:2463-2467.

    40. [40]

      Kaligotla S., Doyle S., Niedzwiedzki D.M.. Triplet state spectra and dynamics of peridinin analogs having different extents of π-electron conjugation[J]. Photosynth. Res., 2010,103:167-174. doi: 10.1007/s11120-010-9535-y

    41. [41]

      Fuciman M., Enriquez M.M., Kaligotla S.. Singlet and triplet state spectra and dynamics of structurally modified peridinins[J]. J. Phys. Chem. B, 2011,115:4436-4445.

    42. [42]

      Fujii R., Kusumoto T., Sashima T.. Sub-μ-second time-resolved absorption spectroscopy of a polar carotenoid analogue, 2-(all-trans-retinylidene) indan-1, 3-dione; formation of the dication by direct triplet-excited sensitization[J]. J. Phys. Chem. A, 2005,109:11117-11122. doi: 10.1021/jp054436i

    43. [43]

      Li L., Hu F., Chang Y.Q.. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy[J]. Chem. Phys. Lett., 2015,633:114-119. doi: 10.1016/j.cplett.2015.05.022

    44. [44]

      Huo M.M., Liang R., Xing Y.D.. Side-chain effects on the solution-phase conformations and charge photogeneration dynamics of low-bandgap copolymers[J]. J. Chem. Phys., 2013,139124904. doi: 10.1063/1.4821751

    45. [45]

      Billsten H.H., Pan J.X., Sinha S.. Excited-state processes in the carotenoid zeaxanthin after excess energy excitation[J]. J. Phys. Chem. A, 2005,109:6852-6859. doi: 10.1021/jp052227s

    46. [46]

      Gao G.Q., Deng Y., Kispert L.D.. Photoactivated ferric chloride oxidation of carotenoids by near-UV to visible light[J]. J. Phys. Chem. B, 1997,101:7844-7849. doi: 10.1021/jp970630w

  • 加载中
    1. [1]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    2. [2]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    3. [3]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    6. [6]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    9. [9]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    10. [10]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    11. [11]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    14. [14]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    15. [15]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    16. [16]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    17. [17]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    18. [18]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    19. [19]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    20. [20]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

Metrics
  • PDF Downloads(4)
  • Abstract views(879)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return