Citation: Zhang Li, Yao Yu-Chao, Gao Meng-Ying, Rong Rui-Xue, Wang Ke-Rang, Li Xiao-Liu, Chen Hua. Anticancer activity and DNA binding property of the trimers of triphenylethylene-coumarin hybrids[J]. Chinese Chemical Letters, ;2016, 27(11): 1708-1716. doi: 10.1016/j.cclet.2016.05.027 shu

Anticancer activity and DNA binding property of the trimers of triphenylethylene-coumarin hybrids

  • Corresponding author: Li Xiao-Liu, lixl@hbu.cn Chen Hua, hua-todd@163.com
  • Received Date: 19 April 2016
    Revised Date: 17 May 2016
    Accepted Date: 24 May 2016
    Available Online: 3 November 2016

Figures(6)

  • Novel trimers of triphenylethylene-coumarin hybrid containing two amino side chains (5a-d and 6a-d) were designed and synthesized by the condensation of 1, 3, 5-benzenetricarboxylic acid with the varied amino monomeric hybrids catalyzed by HATU and DIPEA at room temperature.The extended trimeric compound 6a (R=piperidinyl) exhibited significant anti-proliferative activity against three cancer cells at IC50 of near 10 μmol/L.UV-vis, fluorescence (lifetime) and thermal denaturation exhibited that 6a had significant interaction with Ct-DNA by the intercalative mode of binding.The order of their antiproliferative activities was 6(a, d) > 5(a, d) and (5-6)a > (5-6)d, respectively, in accordance with that of their DNA binding properties, which suggested that the prolonged linker (six carbons) and piperidinyl group on the side chains are beneficial to DNA binding and the anti-tumor activity.
  • 加载中
    1. [1]

      Amin K.M., Abdel Gawad N.M., Abdel Rahman D.E., El Ashry M.K.M.. New series of 6-substituted coumarin derivatives as effective factor Xa inhibitors: synthesis, in vivo antithrombotic evaluation and molecular docking[J]. Bioorg. Chem., 2014,52:31-43. doi: 10.1016/j.bioorg.2013.11.002

    2. [2]

      Rempel V., Volz N., Gläser F.. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold[J]. J. Med. Chem., 2013,56:4798-4810. doi: 10.1021/jm4005175

    3. [3]

      Chen Y., Wang S.L., Xu X.Q.. Synthesis and biological investigation of coumarin piperazine (Piperidine) derivatives as potential multireceptor atypical antipsychotics[J]. J. Med. Chem., 2013,56:4671-4690. doi: 10.1021/jm400408r

    4. [4]

      Zou Q.L., Fang Y.Y., Zhao Y.X.. Synthesis and in vitro photocytotoxicity of coumarin derivatives for one-and two-photon excited photodynamic therapy[J]. J. Med. Chem., 2013,56:5288-5294. doi: 10.1021/jm400025g

    5. [5]

      Keri R.S., Sasidhar B.S., Nagaraja B.M., Santos M.A.. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents[J]. Eur. J. Med. Chem., 2015,100:257-269. doi: 10.1016/j.ejmech.2015.06.017

    6. [6]

      Li B., Pai R., Di M.. Coumarin-based inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicase: chemical optimization, biological evaluation, and antibacterial activities[J]. J. Med. Chem., 2012,55:10896-10908. doi: 10.1021/jm300922h

    7. [7]

      Hamulakova S., Janovec L., Hrabinova M.. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors[J]. J. Med. Chem., 2014,57:7073-7084. doi: 10.1021/jm5008648

    8. [8]

      Thakur A., Singla R., Jaitak V.. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies[J]. Eur. J. Med. Chem., 2015,101:476-495. doi: 10.1016/j.ejmech.2015.07.010

    9. [9]

      Basanagouda M., Jambagi V.B., Barigidad N.N., Laxmeshwar S.S., Narayanachar V.D.. Synthesis, structure-activity relationship of iodinated-4-aryloxymethylcoumarins as potential anti-cancer and anti-mycobacterial agents[J]. Eur. J. Med. Chem., 2014,74:225-233. doi: 10.1016/j.ejmech.2013.12.061

    10. [10]

      Dandriyal J., Singla R., Kumar M., Jaitak V.. Recent developments of C-4 substituted coumarin derivatives as anticancer agents[J]. Eur. J. Med. Chem., 2016,119:141-168. doi: 10.1016/j.ejmech.2016.03.087

    11. [11]

      Touisni N., Maresca A., McDonald P.C.. Glycosyl coumarin carbonic anhydrase Ⅸ and Ⅻ inhibitors strongly attenuate the growth of primary breast tumors[J]. J. Med. Chem., 2011,54:8271-8277. doi: 10.1021/jm200983e

    12. [12]

      Wang C.J., Hsieh Y.J., Chu C.Y., Lin Y.L., Tseng T.H.. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin[J]. Cancer Lett., 2002,183:163-168. doi: 10.1016/S0304-3835(02)00031-9

    13. [13]

      Nasr T., Bondock S., Youns M.. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives[J]. Eur. J. Med. Chem., 2014,76:539-548. doi: 10.1016/j.ejmech.2014.02.026

    14. [14]

      Avin B.R.V., Thirusangu P., Ranganatha V.L.. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis[J]. Eur. J. Med. Chem., 2014,75:211-221. doi: 10.1016/j.ejmech.2014.01.050

    15. [15]

      Chu C.Y., Tsai Y.Y., Wang C.J., Lin W.L., Tseng T.H.. Induction of apoptosis by esculetin in human leukemia cells[J]. Eur. J. Pharmacol., 2001,416:25-32. doi: 10.1016/S0014-2999(01)00859-7

    16. [16]

      McKie J.A., Bhagwat S.S., Brady H.. Lead identification of a potent benzopyranone selective estrogen receptor modulator[J]. Bioorg. Med. Chem. Lett., 2004,14:3407-3410. doi: 10.1016/j.bmcl.2004.04.081

    17. [17]

      Bailly C.. Contemporary challenges in the design of topoisomerase Ⅱ inhibitors for cancer chemotherapy[J]. Chem. Rev., 2012,112:3611-3640. doi: 10.1021/cr200325f

    18. [18]

      Facompré M., Tardy C., Bal-Mahieu C.. Lamellarin D: a novel potent inhibitor of topoisomerase I[J]. Cancer Res., 2003,63:7392-7399.  

    19. [19]

      Emami S., Dadashpour S.. Current developments of coumarin-based anti-cancer agents in medicinal chemistry[J]. Eur. J. Med. Chem., 2015,102:611-630. doi: 10.1016/j.ejmech.2015.08.033

    20. [20]

      Liu M.M., Chen X.Y., Huang Y.Q.. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents[J]. J. Med. Chem., 2014,57:9343-9356. doi: 10.1021/jm500613m

    21. [21]

      Zhang W.J., Li Z., Zhou M.. Synthesis and biological evaluation of 4-(1, 2, 3-triazol-1-yl)coumarin derivatives as potential antitumor agents[J]. Bioorg. Med. Chem. Lett., 2014,24:799-807. doi: 10.1016/j.bmcl.2013.12.095

    22. [22]

      Pé rez-Cruz F., Vazquez-Rodriguez S., João Matos M.. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds[J]. J. Med. Chem., 2013,56:6136-6145. doi: 10.1021/jm400546y

    23. [23]

      Gupta A., Mandal S.K., Leblanc V.. Synthesis and cytotoxic activity of benzopyran-based platinum(Ⅱ) complexes[J]. Bioorg. Med. Chem. Lett., 2008,18:3982-3987. doi: 10.1016/j.bmcl.2008.06.013

    24. [24]

      Sashidhara K.V., Kumar A., Kumar M., Sarkar J., Sinha S.. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents[J]. Bioorg. Med. Chem. Lett., 2010,20:7205-7211. doi: 10.1016/j.bmcl.2010.10.116

    25. [25]

      Liu X.H., Liu H.F., Chen J.. Synthesis and molecular docking study of novel coumarin derivatives containing 4, 5-dihydropyrazole moiety as potential antitumor agents[J]. Bioorg. Med. Chem. Lett., 2010,20:5705-5708. doi: 10.1016/j.bmcl.2010.08.017

    26. [26]

      Belluti F., Fontana G., Dal Bo L.. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: identification of novel proapoptotic agents[J]. Bioorg. Med. Chem. Lett., 2010,18:3543-3550. doi: 10.1016/j.bmc.2010.03.069

    27. [27]

      Zhao H.P., Donnelly A.C., Kusuma B.R.. Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents[J]. J. Med. Chem., 2011,54:3839-3853. doi: 10.1021/jm200148p

    28. [28]

      Siddiqui Z.N., Mohammed Musthafa T.N., Ahmad A., Khan A.U.. Synthesis of 4-hydroxycoumarin heteroarylhybrids as potential antimicrobial agents[J]. Arch. Pharm. Chem. Life Sci., 2011,344:394-401. doi: 10.1002/ardp.201000218

    29. [29]

      Kusuma B.R., Peterson L.B., Zhao H.P.. Targeting the heat shock protein 90 dimer with dimeric inhibitors[J]. J. Med. Chem., 2011,54:6234-6253. doi: 10.1021/jm200553w

    30. [30]

      Burlison J.A., Blagg B.S.J.. Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery[J]. Org. Lett., 2006,8:4855-4858. doi: 10.1021/ol061918j

    31. [31]

      Tan G.H., Yao Y.C., Gu Y.J.. Cytotoxicity and DNA binding property of the dimers of triphenylethylene-coumarin hybrid with one amino side chain[J]. Bioorg. Med. Chem. Lett., 2014,24:2825-2830. doi: 10.1016/j.bmcl.2014.04.106

    32. [32]

      Zhu M., Zhou L.K., Yao Y.C.. Anticancer activity and DNA binding property of the dimers of triphenylethylene-coumarin hybrid with two amino side chains[J]. Med. Chem. Res., 2015,24:2314-2324. doi: 10.1007/s00044-014-1296-2

    33. [33]

      Zhao L., Yao Y.C., Li S.. Cytotoxicity and DNA binding property of triphenylethylene-coumarin hybrids with two amino side chains[J]. Bioorg. Med. Chem. Lett., 2014,24:900-904. doi: 10.1016/j.bmcl.2013.12.084

    34. [34]

      Chen H., Li S., Yao Y.C.. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA[J]. Bioorg. Med. Chem. Lett., 2013,23:4785-4789. doi: 10.1016/j.bmcl.2013.07.009

    35. [35]

      Mosmann T.J.. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays[J]. J. Immunol. Methods, 1983,65:55-63. doi: 10.1016/0022-1759(83)90303-4

    36. [36]

      Sahoo D., Bhattacharya P., Chakravorti S.. Reverse micelle induced flipping of binding site and efficiency of albumin protein with an ionic styryl dye[J]. J. Phys. Chem. B, 2010,114:10442-10450. doi: 10.1021/jp102937y

    37. [37]

      Breslow R., Overman I.E.. "Artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity[J]. J. Am. Chem. Soc., 1970,92:1075-1077. doi: 10.1021/ja00707a062

    38. [38]

      Pasternack R.F., Gibbs E.J., Villatrnaca J.J.. Interactions of porphyrins with nucleic acids[J]. Biochemistry, 1983,22:2406-2414. doi: 10.1021/bi00279a016

    39. [39]

      Purcell M., Neault J.F., Tajmir-Riahi H.A.. Interaction of taxol with human serum albumin[J]. Biochim. Biophys. Acta, 2000,1478:61-68. doi: 10.1016/S0167-4838(99)00251-4

    40. [40]

      Faulhaber K., Granzhan A., Ihmels H.. Studies of the fluorescence light-up effect of amino-substituted benzo[J]. Photochem. Photobiol. Sci., 2011,10:1535-1545. doi: 10.1039/c1pp05106g

    41. [41]

      Ramadass R., Bereiter-Hahn J.. Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays[J]. J. Phys. Chem. B, 2007,111:7681-7690. doi: 10.1021/jp070378k

    42. [42]

      Pandey S., Baker G.A., Kane M.A., Bonzagni N.J., Bright F.V.. O2 Quenching of ruthenium(Ⅱ) tris(2, 2'-bypyridyl)2+ within the water pool of perfluoropolyetherbased reverse micelles formed in supercritical carbon dioxide[J]. Langmuir, 2000,16:5593-5599. doi: 10.1021/la991719r

    43. [43]

      Wang J., Wang D.L., Miller E.K.. Photoluminescence of water-soluble conjugated polymers: origin of enhanced quenching by charge transfer[J]. Macromolecules, 2000,33:5153-5158. doi: 10.1021/ma000081j

    44. [44]

      Chaveerach U., Meenongwa A., Trongpanich Y., Soikum C., Chaveerach P.. DNA binding and cleavage behaviors of copper(Ⅱ) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities[J]. Polyhedron, 2010,29:731-738. doi: 10.1016/j.poly.2009.10.031

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Chanqi YeJia ZhangJie ShenRuyin ChenQiong LiPeng ZhaoDong ChenJian Ruan . Attractive Pickering emulsion gel loaded with oxaliplatin and lactate dehydrogenase inhibitor increases the anti-tumor effect in hepatocellular carcinoma. Chinese Chemical Letters, 2025, 36(7): 110519-. doi: 10.1016/j.cclet.2024.110519

    3. [3]

      Huijuan ZhangChenglin LiangXinyi DingMeng ZhangSiyu LuLin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525

    4. [4]

      Rongrong ZhengZuxiao ChenQiuyuan LiNi YangWenjun ZhangChuyu HuangLinping ZhaoXin ChenHong ChengShiying Li . Endoplasmic reticulum targeting photodynamic oxidizer to boost anti-tumor immunity by intensifying immunogenic cell death in conjunction with IDO1 inhibition. Chinese Chemical Letters, 2025, 36(12): 110865-. doi: 10.1016/j.cclet.2025.110865

    5. [5]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    6. [6]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    7. [7]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    8. [8]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    9. [9]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    10. [10]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    11. [11]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    12. [12]

      Huige ZhangWei ChenYuyan HuangMingfang WuHongli ChenCuiling RenXiaoyan LiuHaixia Zhang . Construction of template-free amplification system coupled with capillary electrophoresis for the simultaneous detection of three tumor-associated DNA repair enzymes. Chinese Chemical Letters, 2025, 36(9): 110721-. doi: 10.1016/j.cclet.2024.110721

    13. [13]

      Juan HeJiao-Xian DuMeng WangXiao-Dong LuoTao Feng . Irpexlactones A and B, a pair of ring-rearranged tremulane sesquiterpenoids from the basidiomycete Irpex lacteus and their anti-inflammatory activity. Chinese Chemical Letters, 2025, 36(10): 110769-. doi: 10.1016/j.cclet.2024.110769

    14. [14]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    15. [15]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    16. [16]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    17. [17]

      Jun XiongBi-Feng Yuan . PELSA: A novel method for highly sensitive identification of protein targets and binding regions. Chinese Chemical Letters, 2025, 36(12): 111527-. doi: 10.1016/j.cclet.2025.111527

    18. [18]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    19. [19]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    20. [20]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

Metrics
  • PDF Downloads(1)
  • Abstract views(1123)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return