Citation: Chun-Rui Wang, Yong-Yang Gong, Wang-Zhang Yuan, Yong-Ming Zhang. Crystallization-induced phosphorescence of pure organic luminogens[J]. Chinese Chemical Letters, ;2016, 27(8): 1184-1192. doi: 10.1016/j.cclet.2016.05.026 shu

Crystallization-induced phosphorescence of pure organic luminogens

Figures(10)

  • This review summarizes the recent progress of efficient room temperature phosphorescence (RTP) from pure organic luminogens achieved by crystallization-induced phosphorescence (CIP), with focus on the advances in our group. Besides homocrystals, mixed crystals and cocrystals are also discussed. Meanwhile, intriguing RTP emission from the luminogens without conventional chromophores is demonstrated.
  • 加载中
    1. [1]

      (a) S.K. Lower, M.A. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev. 66(1966) 199-241; (b) C.J. Fischer, A. Gafni, D.G. Steel, J.A. Schauerte, The triplet-state lifetime of indole in aqueous and viscous environments: significance to the interpretation of room temperature phosphorescence in proteins, J. Am. Chem. Soc. 124(2002) 10359-10366.

    2. [2]

      (a) Y.G. Ma, H.Y. Zhang, J.C. Shen, C.M. Che, Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes, Synth. Met. 94(1998) 245-248; (b) M.A. Baldo, D.F. O'brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395(1998) 151-154.

    3. [3]

      D. Lee, J. Jung, D. Bilby. A novel optical ozone sensor based on purely organic phosphor[J]. ACS Appl. Mater. Interfaces, 2015,7:2993-2997. doi: 10.1021/am5087165

    4. [4]

      (a) Q.L.M. de Chermont, C. Chanéac, J. Seguin, et al., Nanoprobes with nearinfrared persistent luminescence for in vivo imaging, Proc. Natl. Acad. Sci. U. S. A. 104(2007) 9266-9271; (b) Q. Zhao, C.H. Huang, F.Y. Li, Phosphorescent heavy-metal complexes for bioimaging, Chem. Soc. Rev. 40(2011) 2508-2524.

    5. [5]

      G.Q. Zhang, G.M. Palmer, M.W. Dewhirst, C.L. Fraser. A dual-emissivematerials design concept enables tumour hypoxia imaging[J]. Nat. Mater., 2009,8:747-751. doi: 10.1038/nmat2509

    6. [6]

      Y.H. Deng, D.X. Zhao, X. Chen. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem. Commun., 2013,49:5751-5753. doi: 10.1039/c3cc42600a

    7. [7]

      (a) P.X. Liang, D. Wang, Z.C. Miao, et al., Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives, Chin. Chem. Lett. 25(2014) 237-242; (b) P.Z. Chen, H.R. Zheng, L.Y. Niu, et al., A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY, Chin. Chem. Lett. 26(2015) 631-635; (c) C.C. Wang, S.Y. Yan, Y.Q. Chen, et al., Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells, Chin. Chem. Lett. 26(2015) 323-328.

    8. [8]

      (a) R. Shrivastava, J. Kaur, Studies on long lasting optical properties of Eu2+ and Dy3+ doped di-barium magnesium silicate phosphors, Chin. Chem. Lett. 26(2015) 1187-1190; (b) B. Wang, H. Lin, J. Xu, et al., Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7: Pr3+, Inorg. Chem. 54(2015) 11299-11306; (c) V.W.W. Yam, V.K.M. Au, S.Y.L. Leung, Light-emitting self-assembled materials based on d8 and d10 transition metal complexes, Chem. Rev. 115(2015) 7589-7728.

    9. [9]

      S. Reineke, M.A. Baldo. Room temperature triplet state spectroscopy of organic semiconductors[J]. Sci. Rep., 2014,43797.  

    10. [10]

      (a) E.B. Asafu-Adjaye, S.Y. Su, Mixture analysis using solid substrate room temperature luminescence, Anal. Chem. 58(1986) 539-543; (b) S. Scypinski, L.J.C. Love, Room-temperature phosphorescence of polynuclear aromatic hydrocarbons in cyclodextrins, Anal. Chem. 56(1984) 322-327; (c) D. Levy, D. Avnir, Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol-gel glasses, J. Photochem. Photobiol. A 57(1991) 41-63; (d) G.Q. Zhang, J.B. Chen, S.J. Payne, et al., Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence, J. Am. Chem. Soc. 129(2007) 8942-8943.

    11. [11]

      W.Z. Yuan, X.Y. Shen, H. Zhao. Crystallization-induced phosphorescence of pure organic luminogens at room temperature[J]. J. Phys. Chem. C, 2010,114:6090-6099. doi: 10.1021/jp909388y

    12. [12]

      (a) J.D. Luo, Z.L. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741; (b) W.Z. Yuan, P. Lu, S.M. Chen, et al., Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state, Adv. Mater. 22(2010) 2159-2163; (c) J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: together we shine, united we soar, Chem. Rev. 115(2015) 11718-11940.

    13. [13]

      O. Bolton, K. Lee, H.J. Kim, K.Y. Lin, J. Kim. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat. Chem., 2011,3:205-210.  

    14. [14]

      (a) M.A. El-Sayed, Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics, J. Phys. Chem. 38(1963) 2834-2838; (b) M.A. El-Sayed, Triplet state. Its radiative and nonradiative properties, Acc. Chem. Res. 1(1968) 8-16.

    15. [15]

      H.F. Shi, Z.F. An, P.Z. Li. Enhancing organic phosphorescence by manipulating heavy atom interaction[J]. Cryst. Growth Des., 2016,16:808-813. doi: 10.1021/acs.cgd.5b01400

    16. [16]

      G.P. Yong, Y.M. Zhang, W.L. She, Y.Z. Li. Stacking-induced white-light and bluelight phosphorescence from purely organic radical materials[J]. J. Mater. Chem., 2011,21:18520-18522. doi: 10.1039/c1jm14690d

    17. [17]

      Y.Y. Gong, Y.Q. Tan, H. Li. Crystallization-induced phosphorescence of benzils at room temperature[J]. Sci. China Chem., 2013,56:1183-1186. doi: 10.1007/s11426-013-4930-9

    18. [18]

      Y.Y., L.F., Q.Peng, etal.. Crystallization-induced dualemission from metaland heavy atom-free aromatic acids and esters[J]. Chem. Sci., 2015,6:4438-4444. doi: 10.1039/C5SC00253B

    19. [19]

      (a) S. Hirata, K. Totani, J.X. Zhang, et al., Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions, Adv. Funct. Mater. 23(2013) 3386-3397; (b) Z.F. An, C. Zheng, Y. Tao, et al., Stabilizing triplet excited states for ultralong organic phosphorescence, Nat. Mater. 14(2015) 685-690; (c) C.Y. Li, X. Tang, L.Q. Zhang, et al., Reversible luminescence switching of an organic solid: controllable on-off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion, Adv. Opt. Mater. 3(2015) 1184-1190; (d) Z.Y. Yang, Z. Mao, X.P. Zhang, et al., Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence, Angew. Chem. Int. Ed. 55(2016) 2181-2185.

    20. [20]

      (a) P.C. Xue, J.B. Sun, P. Chen, et al., Luminescence switching of a persistent roomtemperature phosphorescent pure organic molecule in response to external stimuli, Chem. Commun. 51(2015) 10381-10384; (b) X.P. Zhang, T.Q. Xie, M.X. Cui, et al., General design strategy for aromatic ketone-based single-component dual-emissive materials, ACS Appl. Mater. Interfaces 6(2014) 2279-2284.

    21. [21]

      Y.Y. Gong, G. Chen, Q. Peng. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens[J]. Adv. Mater., 2015,27:6195-6201. doi: 10.1002/adma.201502442

    22. [22]

      Y.Y. Gong, Y.Q. Tan, J. Mei. Room temperature phosphorescence from natural products: crystallization matters[J]. Sci. China Chem., 2013,56:1178-1182. doi: 10.1007/s11426-013-4923-8

    23. [23]

      A. Fermi, G. Bergamini, R. Peresutti. Molecular asterisks with a persulfurated benzene core are among the strongest organic phosphorescent emitters in the solid state[J]. Dyes Pigments, 2014,110:113-122. doi: 10.1016/j.dyepig.2014.04.036

    24. [24]

      G. He, W. Torres Delgado, D.J. Schatz. Coaxing solid-state phosphorescence from tellurophenes[J]. Angew. Chem. Int. Ed., 2014,53:4587-4591. doi: 10.1002/anie.201307373

    25. [25]

      M. Shimizu, A. Kimura, H. Sakaguchi. Room-temperature phosphorescence of crystalline 1, 4-bis (aroyl)-2, 5-dibromobenzenes[J]. Eur. J. Org. Chem., 2016,2016:467-473. doi: 10.1002/ejoc.201501382

    26. [26]

      S. Maity, P. Mazumdar, M. Shyamal, G.P. Sahoo, A. Misra. Crystal induced phosphorescence from benz(a)anthracene microcrystals at room temperature[J]. Spectrochim. Acta Part A, 2016,157:61-68. doi: 10.1016/j.saa.2015.12.002

    27. [27]

      (a) H.Y. Gao, X.R. Zhao, H. Wang, X. Pang, W.J. Jin, Phosphorescent cocrystals assembled by 1,4-diiodotetrafluorobenzene and fluorene and its heterocyclic analogues based on C-I…π halogen bonding, Cryst. Growth Des. 12(2012) 4377-4387; (b) Q.J. Shen, H.Q. Wei, W.S. Zou, H.L. Sun, W.J. Jin, Cocrystals assembled by pyrene and 1,2-or 1, 4-diiodotetrafluorobenzenes and their phosphorescent behaviors modulated by local molecular environment, CrystEngComm 14(2012) 1010-1015; (c) H.Y. Gao, Q.J. Shen, X.R. Zhao, et al., Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C-I…π halogen bonding, J. Mater. Chem. 22(2012) 5336-5343; (d) Q.J. Shen, X. Pang, X.R. Zhao, et al., Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C-I…π halogen bonding and other assisting weak interactions, CrystEngComm 14(2012) 5027-5034.

    28. [28]

      S. d'Agostino, F. Grepioni, D. Braga, B. Ventura. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals[J]. Cryst. Growth Des., 2015,15:2039-2045. doi: 10.1021/acs.cgd.5b00226

    29. [29]

      kr and knr are the rate constants for radiative (phosphorescence) and nonradiative deactivations from the T1 state, respectively, and kq is the rate constant based on quenching of the triplet excitons by interaction with the surroundings such as oxygen and humidity.

    30. [30]

      G.M. Brown, H.A. Levy. α-D-Glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis[J]. Science, 1965,147:1038-1039.  

  • 加载中
    1. [1]

      Ya-Ting GaoYi-Lin ZhuXiao-Yuan WangLi-Ya LiangMeng-Li LiuShuai ChangHan-Bin XuDa-Wei LiBin-Bin Chen . Pure organic electrophosphorochromism system. Chinese Chemical Letters, 2025, 36(11): 110855-. doi: 10.1016/j.cclet.2025.110855

    2. [2]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    3. [3]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    4. [4]

      Zeyin ChenJiaju ShiYusheng ZhouPeng ZhangGuodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629

    5. [5]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    6. [6]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    7. [7]

      Hong YaoFeixiang YangJianpeng HuWenyu CaoShuning QinTai-Bao WeiBingbing ShiQi Lin . Ultralong room temperature phosphorescence and broad color-tunability persistent luminescence via new strategy. Chinese Chemical Letters, 2025, 36(6): 110375-. doi: 10.1016/j.cclet.2024.110375

    8. [8]

      Bo YangSuqiong YanShirong BanWei Huang . New horizons in phosphorus-based emitters: From circularly polarized fluorescence to room-temperature phosphorescence. Chinese Chemical Letters, 2025, 36(11): 110837-. doi: 10.1016/j.cclet.2025.110837

    9. [9]

      Takuya TanakaRikuto NodaYuki SawatariRiki IwaiBen Zhong TangGen-ichi Konishi . Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens. Chinese Chemical Letters, 2025, 36(12): 111495-. doi: 10.1016/j.cclet.2025.111495

    10. [10]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    11. [11]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    12. [12]

      Xinhui FanYonghao FanYuli DangPuhui XieXin LiZhanqi CaoSong JiangLijie LiuXin ZhengLixia XieCaoyuan NiuGuoxing LiuYong Chen . Logically ordered control of organic room-temperature long-lived supramolecular luminophors. Chinese Chemical Letters, 2025, 36(8): 110648-. doi: 10.1016/j.cclet.2024.110648

    13. [13]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    14. [14]

      Ying ZhaoYao HeJian-Xin YangWen-Jie LiuDan TianFrancisco AznarezLe-Le GongLi-Long DangLu-Fang Ma . Controllable self-assembly and photothermal conversion of metalla[2]catenanes induced by synergistic effect of free radicals and stacking interactions. Chinese Chemical Letters, 2025, 36(12): 111460-. doi: 10.1016/j.cclet.2025.111460

    15. [15]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    16. [16]

      Linnan JiangZhenkai QianYong ChenXiaoyong YuYugui QiuWen-Wen XuYonghui SunXiufang XuLihua WangYu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676

    17. [17]

      Wen-Xuan SongYao-Yu CaiYing-Jie LiuShuang-Quan Zang . Cation-driven assembly of gold(Ⅰ) tweezers towards lighted circularly polarized phosphorescence. Chinese Chemical Letters, 2025, 36(9): 110326-. doi: 10.1016/j.cclet.2024.110326

    18. [18]

      Qingyu NiuYulu ZhangZerong GeJiabao LiuZhiqiang LiYong ChenYu Liu . Competitive binding based on cucurbit[8]uril for florescence/phosphorescence ratiometric detection of 3-nitrotyrosine. Chinese Chemical Letters, 2025, 36(11): 110935-. doi: 10.1016/j.cclet.2025.110935

    19. [19]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    20. [20]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

Metrics
  • PDF Downloads(8)
  • Abstract views(1371)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return