Citation: Li-Dan Hu, Yu-Lin Zhang, Hong Wang, Xing-Yue Peng, Yi Wang. Highly efficient detection of insulinotropic action of glucagon via GLP-1 receptor in mice pancreatic beta-cell with a novel perfusion microchip[J]. Chinese Chemical Letters, ;2016, 27(7): 1027-1031. doi: 10.1016/j.cclet.2016.05.023 shu

Highly efficient detection of insulinotropic action of glucagon via GLP-1 receptor in mice pancreatic beta-cell with a novel perfusion microchip

  • Corresponding author: Yi Wang, wangyideyouxiang@sohu.com
  • Received Date: 28 April 2016
    Revised Date: 18 May 2016
    Accepted Date: 24 May 2016
    Available Online: 1 July 2016

Figures(4)

  • Glucagon exhibits insulinotropic ability by activating cAMP through glucagon or glucagon-like peptide-1 (GLP-1) receptors. To investigate the mechanism of endogenous and exogenous glucagon on insulin release, we studied the receptor selectivity on pancreatic islet beta-cells by switching the glucose concentration from 20 mmol/L to 0 mmol/L. To measure the exact temporal relationship between glucagon and insulin release, we developed a quick, small volume, multi-channel polydimethylsiloxane (PDMS) microchip. At 0 mmol/L glucose, we observed an insulinotropic effect in both INS-1 cells and islets. Meanwhile, we observed a 63 ± 6.27 s delay of endogenous glucagon-induced insulin release. After treatment with glucagon and GLP-1 receptor antagonists, we found that endogenous glucagon utilized the glucagon receptor, whereas exogenous glucagon primarily utilized the GLP-1 receptor to promote insulin secretion. The microchip can also be used to describe the “glucagonocentric” vision of diabetes pathophysiology. Taken together, the insulinotropic mechanism of different receptors should be taken into account in clinical treatments.
  • 加载中
    1. [1]

      E.W. Sutherland, C. De Duve. Origin and distribution of the hyperglycemicglycogenolytic factor of the pancreas[J]. J. Biol. Chem., 1948,175:663-674.

    2. [2]

      R.H. Unger, A.D. Cherrington. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover[J]. J. Clin. Invest., 2012,122:4-12. doi: 10.1172/JCI60016

    3. [3]

      B.E. Dunning, J.E. Gerich. The role of a-cell dysregulation in fasting and postprandial hyperglycemia in type, 2 diabetes and therapeutic implications[J]. Endocr. Rev., 2007,28:253-283. doi: 10.1210/er.2006-0026

    4. [4]

      Y. Lee, E.D. Berglund, X.X. Yu. Hyperglycemia in rodent models of type, 2 diabetes requires insulin-resistant alpha cells[J]. Proc. Natl. Acad. Sci. U. S. A., 2014,111:13217-13222. doi: 10.1073/pnas.1409638111

    5. [5]

      R.H. Unger, L. Orci. The essential role of glucagon in the pathogenesis of diabetes mellitus[J]. Lancet, 1975,305:14-16. doi: 10.1016/S0140-6736(75)92375-2

    6. [6]

      A.D. Baron, L. Schaeffer, P. Shragg, O.G. Kolterman. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics[J]. Diabetes, 1987,36:274-283. doi: 10.2337/diab.36.3.274

    7. [7]

      H.Y. Gaisano, P.E. Macdonald, M. Vranic. Glucagon secretion and signaling in the development of diabetes[J]. Front. Physiol., 2012,3349.

    8. [8]

      S. Malmgren, B. Ahré n. Evidence for time dependent variation of glucagon secretion in mice[J]. Peptides, 2016,76:102-107. doi: 10.1016/j.peptides.2016.01.008

    9. [9]

      L.R. Nyman, K.S. Wells, W.S. Head. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets[J]. J. Clin. Invest., 2008,118:3790-3797. doi: 10.1172/JCI36209

    10. [10]

      E. Samols, G. Marri, V. Marks. Interrelationship of glucagon, insulin and glucose: the insulinogenic effect of glucagon[J]. Diabetes, 1966,15:855-866. doi: 10.2337/diab.15.12.855

    11. [11]

      P. Huypens, Z. Ling, D. Pipeleers, F. Schuit. Glucagon receptors on human islet cells contribute to glucose competence of insulin release[J]. Diabetologia, 2000,43:1012-1019. doi: 10.1007/s001250051484

    12. [12]

      K. Moens, D. Flamez, C. Van Schravendijk. Dual glucagon recognition by pancreatic β-cells via glucagon and glucagon-like peptide, 1 receptors[J]. Diabetes, 1998,47:66-72. doi: 10.2337/diab.47.1.66

    13. [13]

      J.S. Mohammed, Y. Wang, T.A. Harvat, J. Oberholzer, D.T. Eddington. Microfluidic device for multimodal characterization of pancreatic islets[J]. Lab Chip, 2009,9:97-106. doi: 10.1039/B809590F

    14. [14]

      S. Runge, B.S. Wulff, K. Madsen, H. Bräuner-Osborne, L.B. Knudsen. Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity[J]. Br. J. Pharmacol., 2003,138:787-794. doi: 10.1038/sj.bjp.0705120

    15. [15]

      L.J. Jelinek, S. Lok, G.B. Rosenberg. Expression cloning and signaling properties of the rat glucagon receptor[J]. Science, 1993,259:1614-1616. doi: 10.1126/science.8384375

    16. [16]

      L.B. Knudsen, D. Kiel, M. Teng. Small-molecule agonists for the glucagon-like peptide, 1 receptor[J]. Proc. Natl. Acad. Sci. U. S. A., 2007,104:937-942. doi: 10.1073/pnas.0605701104

    17. [17]

      D.J. Drucker, J. Philippe, S. Mojsov, W.L. Chick, J.F. Habener. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line[J]. Proc. Natl. Acad. Sci. U. S. A., 1987,84:3434-3438. doi: 10.1073/pnas.84.10.3434

    18. [18]

      B. Portha, C. Tourrel-Cuzin, J. Movassat. Activation of the GLP-1 receptor signalling pathway: a relevant strategy to repair a deficient beta-cell mass[J]. Exp. Diabetes Res., 2011,2011376509.  

    19. [19]

      P.E. MacDonald, W. El-Kholy, M.J. Riedel. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion[J]. Diabetes, 2002,51:S434-S442. doi: 10.2337/diabetes.51.2007.S434

    20. [20]

      K.M. Hope, P.O.T. Tran, H.R. Zhou. Regulation of α-cell function by the β-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis[J]. Diabetes, 2004,53:1488-1495. doi: 10.2337/diabetes.53.6.1488

    21. [21]

      G. Tian, S. Sandler, E. Gylfe, A. Tengholm. Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets[J]. Diabetes, 2011,60:1535-1543. doi: 10.2337/db10-1087

    22. [22]

      L.R. Landa Jr., M. Harbeck, K. Kaihara. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 b-cell line[J]. J. Biol. Chem., 2005,280:31294-31302. doi: 10.1074/jbc.M505657200

    23. [23]

      B. Hellman, A. Salehi, E. Grapengiesser, E. Gylfe. Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon[J]. Biochem. Biophys. Res. Commun., 2012,417:1219-1223. doi: 10.1016/j.bbrc.2011.12.113

    24. [24]

      H. Yoowarren, A.G. Willse, N. Hancock. Regulation of rat glucagon receptor expression[J]. Biochem. Biophys. Res. Commun., 1994,205:347-353. doi: 10.1006/bbrc.1994.2671

    25. [25]

      N. Abrahamsen, E. Nishimura. Regulation of glucagon and glucagon-like peptide-1 receptor messenger ribonucleic acid expression in cultured rat pancreatic islets by glucose, cyclic adenosine, 30, 50-monophosphate, and glucocorticoids[J]. Endocrinology, 1995,136:1572-1578.

    26. [26]

      G. Xu, H. Kaneto, D.R. Laybutt. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes[J]. Diabetes, 2007,56:1551-1558. doi: 10.2337/db06-1033

    27. [27]

      A.P. van Beek, E.R. de Haas, W.A. van Vloten. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review[J]. Eur. J. Endocrinol., 2004,151:531-537. doi: 10.1530/eje.0.1510531

  • 加载中
    1. [1]

      Cheng Cheng Liu Yun Liu Hui Xiang Wang Yan Bo Qi Peng Yuan Yang Bao Hong Liu . Apolipoprotein B100 analysis in microchip with electrochemical detection. Chinese Chemical Letters, 2011, 22(11): 1343-1346. doi: 10.1016/j.cclet.2011.05.028

    2. [2]

      Tao HUANG Kai Xun HUANG . Preparation and Analysis of Acylated Insulin with Dehydrocholic Acid. Chinese Chemical Letters, 2005, 16(6): 743-746.

    3. [3]

      Juan Huang Jian Wei Wang Tao Gong Zhi Rong Zhang . Synthesis and characterization of insulin-5-Fu conjugate,enabling insulin as multi-drug carder via dendritic approach. Chinese Chemical Letters, 2007, 18(3): 247-250. doi: 10.1016/j.cclet.2006.12.026

    4. [4]

      Cui E.Lin Quan Bai . Short communication Refolding of reduced/denatured bovine pancreatic insulin with ion-exchange chromatography coupled with MALDI-TOF MS. Chinese Chemical Letters, 2009, 20(12): 1487-1490. doi: 10.1016/j.cclet.2009.07.005

    5. [5]

      Chun Ye Liu Xu Xu Hong Jun Gao Jie Rong Chen . Fabrication of a novel poly(dimethylsiloxane) microchips with two sharpened stretching tips. Chinese Chemical Letters, 2007, 18(2): 221-224. doi: 10.1016/j.cclet.2006.12.036

    6. [6]

      Wang ZhenyuWu ChaoxiongFan TingHan XianweiWang QiongLei JincanYang Jun . Electroformation and collection of giant liposomes on an integrated microchip. Chinese Chemical Letters, 2019, 30(2): 353-358. doi: 10.1016/j.cclet.2018.12.001

    7. [7]

      Xian YiZhou MengxuanHan ShangchenYang RongWang Yi . A FRET biosensor reveals free zinc deficiency in diabetic betacell vesicles. Chinese Chemical Letters, 2020, 31(2): 468-472. doi: 10.1016/j.cclet.2019.08.012

    8. [8]

      Wu ZengnanXu NingLi WeiweiLin Jin-Ming . A membrane separation technique for optimizing sample preparation of MALDI-TOF MS detection. Chinese Chemical Letters, 2019, 30(1): 95-98. doi: 10.1016/j.cclet.2018.01.048

    9. [9]

      Zhi Li Li . Direct observation of the autophosphorylation of insulin receptor kinase by mass spectrometry. Chinese Chemical Letters, 2009, 20(2): 204-206. doi: 10.1016/j.cclet.2008.10.043

    10. [10]

      Shuai Jian Ni Hui Bin Zhang Wen Long Huang Jin Pei Zhou Hai Qian . Solid phase synthesis of fatty acid modified glucagon-like peptide-1 (7-36) amide under thermal and controlled microwave irradiation. Chinese Chemical Letters, 2010, 21(1): 27-30. doi: 10.1016/j.cclet.2009.08.007

    11. [11]

      Bin ZHAO Yang Jie WUJing Chao TAO Han Zhen YUAN . SYNTHESES OF DITOPIC RECEPTOR MACROCYCLES. Chinese Chemical Letters, 1996, 7(6): 535-538.

    12. [12]

      Hui Fang Jie Li Wen Fu Fu . Synthesis of a novel tripodal receptor based on 1,8-naphthyridine derivatives. Chinese Chemical Letters, 2010, 21(1): 23-26. doi: 10.1016/j.cclet.2009.08.005

    13. [13]

      Zhao HongYang Xiao-HuaPan Yu-ChenTian Han-WenHu Xin-YueGuo Dong-Sheng . Inhibition of insulin fibrillation by amphiphilic sulfonatocalixarene. Chinese Chemical Letters, 2020, 31(7): 1873-1876. doi: 10.1016/j.cclet.2020.01.042

    14. [14]

      Qin XuanZhao HuiJiang YanhongYin FengTian YuanXie MingshengYe XiyangXu NaihanLi Zigang . Development of a potent peptide inhibitor of estrogen receptor α. Chinese Chemical Letters, 2018, 29(7): 1160-1162. doi: 10.1016/j.cclet.2018.04.004

    15. [15]

      Xiao-Jian WangJian-Guo QiGang LiYu-Lin TianDa-Li Yin . An efficient method for preparing the sphingosine-1-phosphate receptor agonist, KRP203-phosphate. Chinese Chemical Letters, 2013, 24(9): 817-820.

    16. [16]

      Jin Yi Xu Qian Ran Wei Yi Hua Xiao Ming Wu Qiu Juan Wang Jing Zhang . Design and synthesis of 2-alkylbenzimidazole derivatives as novel non-peptide angiotensin Ⅱ AT1 receptor antagonists. Chinese Chemical Letters, 2007, 18(3): 251-254. doi: 10.1016/j.cclet.2006.12.029

    17. [17]

      Zhi Xian WANG You Cheng ZHU Ru Yun JI . OPIOID δ RECEPTOR IRREVERSIBLE INHIBITORS 1.SYNTHESIS AND ABSOLUTE CONFIGURATION OF OHMEFENTANYL ISOTHIOCYANATE ENANTIOMERS. Chinese Chemical Letters, 1995, 6(9): 759-762.

    18. [18]

      Zi Li XIAO Ren WEN An Gou MO Xi Peng JING Feng Yan SUN . 1-SUBSTITUTED PHENYL-β-CARBOLINES:SYNTHESIS AND SPECIFIC BINDING WITH BENZODIAZEPINE RECEPTOR. Chinese Chemical Letters, 1991, 3(9): 677-680.

    19. [19]

      Yan-Hui ZhuMeng ZhangQun-Yi LiQing LiuJie ZhangYun-Yun YuanFa-Jun NanMing-Wei Wang . The hit-to-lead optimization of 1, 2, 3, 4, 4a, 9a-hexahydro-1H-xanthenes as glucocorticoid receptor antagonists. Chinese Chemical Letters, 2014, 25(05): 693-698. doi: 10.1016/j.cclet.2014.03.017

Metrics
  • PDF Downloads(1)
  • Abstract views(214)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return