Citation: Dong Lu, Xiao-Chun Yang, Bing Leng, Xiao-Di Yang, Cong-Wu Ge, Xue-Shun Jia, Xi-Ke Gao. Fine-tuning the molecular energy levels by incorporating thiophene units onto the π-backbone of core-expanded naphthalene diimides[J]. Chinese Chemical Letters, ;2016, 27(7): 1022-1026. doi: 10.1016/j.cclet.2016.05.003 shu

Fine-tuning the molecular energy levels by incorporating thiophene units onto the π-backbone of core-expanded naphthalene diimides

Figures(5)

  • A series of core-expanded naphthalene diimides (NDI-DTYM) and thiophene-based derivatives (1a-c) were designed and synthesized to investigate the relationship between molecular structures and the highest occupied molecular orbital (HOMO) energy levels but has little impact on the lowest unoccupied molecular orbital (LUMO) energy levels. The results demonstrated that increasing the number of thiophene units can gradually elevate the HOMO energy levels but had little impact on the LUMO energy levels. The n-channel organic field-effect transistors (OFETs) based on 1b and 1c have demonstrated that these almost unchanged LUMO energy levels are proper to transport electrons.
  • 加载中
    1. [1]

      C. Wang, H. Dong, W. Hu. Semiconducting π-conjugated systems in fieldeffect transistors: a material odyssey of organic electronics[J]. Chem. Rev., 2012,112:2208-2267. doi: 10.1021/cr100380z

    2. [2]

      (a) C.L. Chochos, N. Tagmatarchis, V.G. Gregoriou. Rational design on n-type organic materials for high performance organic photovoltaics. RSC Adv., 2013, 3: 7160-7181;(b) X. Zhang, X. Li. Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines: fundamental understanding toward raising LUMO energy of fullerene electron-acceptor. Chin. Chem. Lett., 2014, 25: 501-504;(c) T. Jiang, Z. Wang, B. Du, et al., Theoretical characterization of hole mobility in BTBPD. Chin. Chem. Lett., 2013, 24: 945-948.

    3. [3]

      R.H. Friend, R.W. Gymer, A.B. Holmes. Electroluminescence in conjugated polymers[J]. Nature, 1999,397:121-128. doi: 10.1038/16393

    4. [4]

      G. Gelinck, P. Heremans, K. Nomoto. Organic transistors in optical displays and microelectronic applications[J]. Adv. Mater., 2010,22:3778-3798. doi: 10.1002/adma.200903559

    5. [5]

      H., A., T.J.Marks. n-Channel semiconductor materials design for organic complementary circuits[J]. Acc. Chem. Res., 2011,44:501-510. doi: 10.1021/ar200006r

    6. [6]

      (a) X. Gao, Z. Zhao. High mobility organic semiconductors for field-effect transistors. Sci. China Chem., 2015, 58: 947-968;(b) J. Dou, Y. Zheng, Z. Yao, et al., A cofacially stacked electron-deficient small molecule with a high electron mobility of over, 10 cm2 V-1 s-1 in air. Adv. Mater. 2015, 27: 8051-8055;(c) G. Xue, J. Wu, C. Fan, et al., Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Mater. Horiz., 2016, 3: 119-123.

    7. [7]

      L. Pandey, C. Risko, J.E. Norton. Donor-acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties[J]. Macromolecules, 2012,45:6405-6414. doi: 10.1021/ma301164e

    8. [8]

      H. Usta, A. Facchetti, T.J. Marks. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis( dicyanovinylene) core[J]. J. Am. Chem. Soc., 2008,130:8580-8581. doi: 10.1021/ja802266u

    9. [9]

      (a) P. Sonar, S.P. Singh, P. Leclere, et al., Synthesis, characterization and comparative study of thiophene-benzothiadiazole based donor-acceptor-donor (D-A-D) materials, J. Mater. Chem. 2009, 19: 3228-3237;(b) Y. Cheng, S.H. Yang, C. Hsu. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev., 2009, 109: 5868-5923.

    10. [10]

      L. Bü rgi, M. Turbiez, R. Pfeiffer. High-mobility ambipolar near-infrared light-Emitting polymer field-effect transistors[J]. Adv. Mater., 2008,20:2217-2224. doi: 10.1002/(ISSN)1521-4095

    11. [11]

      A. Facchetti, M.H. Yoon, C.L. Stern. Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors[J]. Angew. Chem. Int. Ed., 2003,42:3900-3903. doi: 10.1002/(ISSN)1521-3773

    12. [12]

      B. Sun, W. Hong, Z.Q. Yan. Record high electron mobility of, 6.3 cm2 V-1 s-1 achieved for polymer semiconductors using a new building block[J]. Adv. Mater., 2014,26:2636-2642. doi: 10.1002/adma.v26.17

    13. [13]

      H. Krü ger, S. Janietz, D. Sainova. Hybrid supramolecular naphthalene diimide-thiophene structures and their application in polymer electronics[J]. Adv. Funct. Mater., 2007,17:3715-3723. doi: 10.1002/(ISSN)1616-3028

    14. [14]

      (a) X. Gao, C. Di, Y. Hu, et al., Core-expanded naphthalene diimides fused with, 2-(1, 3-dithiol-2-ylidene) malonitrile groups for high-performance, ambient-stable, solution-processed n-channel organic thin film transistors. J. Am. Chem. Soc. 2010, 132: 3697-3699;(b) Y. Hu, Y. Qin, X. Gao, et al., One-pot synthesis of core-expanded naphthalene diimides: enabling n-substituent modulation for diverse n-type organic materials. Org. Lett., 2012, 14: 292-295;(c) X. Gao, Y. Hu. Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J. Mater. Chem. C., 2014, 2: 3099-3117.

    15. [15]

      S.L. Suraru, U. Zschieschang, H. Klauk. A core-extended naphthalene diimide as a p-channel semiconductor[J]. Chem. Commun., 2011,47:11504-11506. doi: 10.1039/c1cc15144d

    16. [16]

      (a) M.L. Tang, T. Okamoto, Z. Bao. High-performance organic semiconductors: asymmetric linear acenes containing sulphur. J. Am. Chem. Soc., 2006, 128: 16002-16003;(b) M.L. Tang, M.E. Roberts, J.J. Locklin, et al., Structure property relationships: asymmetric oligofluorene-thiophene molecules for organic TFTs. Chem. Mater., 2006, 18: 6250-6257.

    17. [17]

      B. Leng, D. Lu, X. Jia. Synthesis of monolateral and bilateral sulfur-heterocycle fused naphthalene diimides (NDIs) from monobromo and dibromo NDIs[J]. Org. Chem. Front., 2015,2:372-377. doi: 10.1039/C4QO00252K

    18. [18]

      A. Mishra, R.K. Behera, P.K. Behera. Cyanines during the, 1990s: a review[J]. Chem. Rev., 2000,100:1973-2012. doi: 10.1021/cr990402t

  • 加载中
    1. [1]

      Li JingHu Yong-HuiGe Cong-WuGong He-GuiGao Xi-Ke . The role of halogen bonding in improving OFET performance of a naphthalenediimide derivative. Chinese Chemical Letters, 2018, 29(3): 423-428. doi: 10.1016/j.cclet.2017.06.008

    2. [2]

      Wei-Hong ZhangBo-Jing JiangPeng Yang . Proteins as functional interlayer in organic field-effect transistor. Chinese Chemical Letters, 2016, 27(8): 1339-1344. doi: 10.1016/j.cclet.2016.06.044

    3. [3]

      Pravinkumar N. SableSwastika GangulyPravin D. Chaudhari . An effi cient one-pot three-component synthesis and antimicrobial evaluation of tetra substituted thiophene derivatives. Chinese Chemical Letters, 2014, 25(7): 1099-1103. doi: 10.1016/j.cclet.2014.03.044

    4. [4]

      Dao-Lin WangJian-Ying WuQing-Tao Cui . An efficient one-pot synthesis of thiophene-fused pyrido[3,2-a]azulenes via Gewald reaction. Chinese Chemical Letters, 2014, 25(12): 1591-1594. doi: 10.1016/j.cclet.2014.07.007

    5. [5]

      Zong Fan Duan Zhi Gang Yang Dong Jie Liu Li Cai Daiki Hoshino Tsuyoshi Morita Gao Yang Zhao Yasushiro Nishioka . Facile synthesis and characterization of a novel thiophene-fused polycyclic aromatics based on pyrene. Chinese Chemical Letters, 2011, 22(7): 819-822. doi: 10.1016/j.cclet.2010.12.054

    6. [6]

      Lei YangDa-Cheng Wei . Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers. Chinese Chemical Letters, 2016, 27(8): 1395-1404. doi: 10.1016/j.cclet.2016.07.010

    7. [7]

      Wei WANG Guang Ming XIA Gui Bao XU Zhi Qiang LIU Qi FANG . New Thiophene Derivatives with Two-photon Excited Fluorescence. Chinese Chemical Letters, 2005, 16(1): 85-88.

    8. [8]

      Rui Sun Jing Song Si Jie Liu Hui Zhao Chun Li Yan Ai Jun Zhang Diwa Koirala Da Wei Li Chun Hu . Design, synthesis and biological evaluation of 1,4-dihydrothieno[3',2':5,6]thiopyrano[4,3-c]pyrazole-3-carboxylic amide derivatives as potential estrogen receptor antagonists. Chinese Chemical Letters, 2011, 22(3): 256-259. doi: 10.1016/j.cclet.2010.10.029

    9. [9]

      Gong YuxuanZhang HuiYu TianzhiZhao Yuling . Preparation and Properties of Thiophene Bridged Coumarin Derivatives. Chemistry, 2020, 83(1): 58-63.

    10. [10]

      Ullah FatehQian SunYang WeitaoShah Muhammad NaeemZhang ZhongqiangChen HongzhengLi Chang-Zhi . Donor-acceptor (D-A) terpolymers based on alkyl-DPP and t-BocDPP moieties for polymer solar cells. Chinese Chemical Letters, 2017, 28(12): 2223-2226. doi: 10.1016/j.cclet.2017.08.009

    11. [11]

      Jie-Yu WangJian Pei . BN-embedded aromatics for optoelectronic applications. Chinese Chemical Letters, 2016, 27(8): 1139-1146. doi: 10.1016/j.cclet.2016.06.014

    12. [12]

      Duan YuweiXu XiaopengLi YingPeng Qiang . Recent development of perylene diimide-based small molecular non-fullerene acceptors in organic solar cells. Chinese Chemical Letters, 2017, 28(11): 2105-2115. doi: 10.1016/j.cclet.2017.08.025

    13. [13]

      TAN Ying-XiongLIU Jian-BoLI QuanZHAO Ke-Qing . Charge Transfer Properties of Organic Semiconductor Molecules of Perylene Derivatives. Chinese Journal of Structural Chemistry, 2015, 34(3): 335-343. doi: 10.14102/j.cnki.0254-5861.2011-0312

    14. [14]

      Wu YifanWang XuepengLi XiaoxuanXiao YinWang Yong . Cyclodextrin derivatives functionalized highly sensitive chiral sensor based on organic field-effect transistor. Chinese Chemical Letters, 2020, 31(1): 99-102. doi: 10.1016/j.cclet.2019.04.074

    15. [15]

      Chunmei ZhaoZhiying MaChunli LiLi XuHua Wang . Thiophene and naphthalene-based double helix: Synthesis, structures and chirality. Chinese Chemical Letters, 2021, 32(1): 457-460. doi: 10.1016/j.cclet.2020.05.040

    16. [16]

      He AnwangQin YuanchengDai WeiliZhou DanZou Jianping . Effective design of A-D-A small molecules for high performance organic solar cells via F atom substitution and thiophene bridge. Chinese Chemical Letters, 2019, 30(12): 2263-2265. doi: 10.1016/j.cclet.2019.07.018

    17. [17]

      Qingxuan FanWenjun NiLingcheng ChenGagik G. GurzadyanYi Xiao . Singlet relaxation dynamics and long triplet lifetimes of thiophene-coupled perylene diimides dyads: New insights for high efficiency organic solar cells. Chinese Chemical Letters, 2020, 31(11): 2965-2969. doi: 10.1016/j.cclet.2020.06.018

    18. [18]

      XIE Ling-HaiCHANG Yong-ZhengGU Ju-FenSUN Rui-JuanLI Jie-WeiZHAO Xiang-HuaHUANG Wei . Design of Organic/Polymeric π-Semiconductors: the Four-Element Principle. Acta Physico-Chimica Sinica, 2010, 26(07): 1784-1794. doi: 10.3866/PKU.WHXB20100713

    19. [19]

      CHEN Fei-JianLIN Qing-FangWANG Tian-YanSHEN Fu-ZhiWEI Zheng-YouLIANG Li-Li . Three Hydrogen-Bonded Metal-Organic Networks with Tunable Semiconductor Properties. Chinese Journal of Inorganic Chemistry, 2016, 32(7): 1275-1282. doi: 10.11862/CJIC.2016.153

    20. [20]

      Song XiaoyuZhao JingZhang WandongChen Long . Novel n-channel organic semiconductor based on pyrene-phenazine fused monoimide and bisimides. Chinese Chemical Letters, 2018, 29(2): 331-335. doi: 10.1016/j.cclet.2017.09.015

Metrics
  • PDF Downloads(0)
  • Abstract views(217)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return