Citation: Qian Geng, Xin Xiao, Guang-Rui He, Su-Mei Yao, Guang-Xin Liang. One stone two birds: Degradation of persistent organic pollutants to a valuable industrial chemical production of pentafluoropropionyl fluoride from HFPO oligomers catalyzed by cesium fluoride in tetraglyme[J]. Chinese Chemical Letters, ;2016, 27(7): 1009-1012. doi: 10.1016/j.cclet.2016.04.026 shu

One stone two birds: Degradation of persistent organic pollutants to a valuable industrial chemical production of pentafluoropropionyl fluoride from HFPO oligomers catalyzed by cesium fluoride in tetraglyme

  • Corresponding author: Guang-Xin Liang, lianggx@nankai.edu.cn
  • Received Date: 31 March 2016
    Revised Date: 22 April 2016
    Accepted Date: 28 April 2016
    Available Online: 17 July 2016

Figures(6)

  • Hexafluoropropylene oxide (HFPO) oligomers are toxic, bioaccumulative, and persistent organic pollutants (POPs). Consuming the harmful chemicals to prevent them from releasing to nature is of serious significance as far as both natural environments and human health are concerned. In this study, investigation on degradation of HFPO oligomers to pentafluoropropionyl fluoride (PPF), a valuable industrial chemical, is reported. Different combinations of alkali metal fluoride in either diglyme or tetraglyme under both flask and batch autoclave conditions were examined. Under the optimal reaction conditions, HFPO oligomers (n = 2-10) were completely degraded to PPF in over 90% yield. Reactions on 200 g scale were tested and no deduction of efficiency was observed, which indicates the potential for practical industrial application of this chemistry.
  • 加载中
    1. [1]

      EPA Data of HFPO Trimer, see: http://yosemite.epa.gov/oppts/epatscat8.nsf/by+Service/E91FE2961720F6DC85256930004F2372/$File/88940000083.pdf

    2. [2]

      HFPO Trimer Toxicology Study data see: http://www.siri.org/msds/tox/tf/q112/q689.html.

    3. [3]

      C. Lu, Y.L. Shi, Z. Zhou. Perfluorinated compounds in blood of textile workers and barbers[J]. Chin. Chem. Lett., 2014,25:1145-1148.

    4. [4]

      T. Oberg, M.S. Iqbal. The chemical and environmental property space of REACH chemicals[J]. Chemosphere, 2012,87:975-981.

    5. [5]

      M. Scheringer, S. Strempel, S. Hukari. How many persistent organic pollutants should we expect?[J]. Atmos. Pollut. Res., 2012,3:383-391.

    6. [6]

      M. Sha, P. Xing, B. Jiang. Strategies for synthesizing non-bioaccumulable alternatives to PFOA and PFOS[J]. Chin. Chem. Lett., 2015,46:491-498.  

    7. [7]

      UNEP, Stockholm Convention on Persistent Organic Pollutants. http://www.pops. int/documents/convtext/convtext_en.pdf

    8. [8]

      FluoroCouncil. Global regulatory activity on long chain perfluorochemicals and fluoropolymers, in: Spring Fluoropolymers Division Conference, Miami Beach, FL. 2012.

    9. [9]

      O. Kysilka, M. Rybá čková, M. Skalický, M. Kvíčalová, J. Cvačka. Fluorous imidazolium room-temperature ionic liquids based on HFPO trimer[J]. J. Fluor. Chem., 2009,130:629-639.

    10. [10]

      J. Lapčík, O. Gimello, V. Ladmiral, C.M. Friesen, B. Ameduri. A new oligo(hexafluoropropylene oxide)-b-oligo(ethylene oxide) diblock surfactant obtained by radical reactions[J]. Polym. Chem., 2015,6:79-96.

    11. [11]

      S. Jr, C. E. Tamborski. Fluorinated aliphatic polyalkylether lubricant with an additive composed of an aromatic phosphine substituted with perfluoroalkylether groups. US, 4, 443, 349, 1984.

    12. [12]

      F. Richard. Dielectric liquids, US, 5, 159, 527 A. 1991.

    13. [13]

      P.D. Brothers, S.V. Gangal. Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant[J]. US, 2010,B27705074.  

    14. [14]

      L. Robert, Burwell Jr.. The cleavage of ethers[J]. Chem. Rev., 1954,54:615-685.

    15. [15]

      M.V. Bhatt, S.U. Kulkarni. Cleavage of ethers[J]. Synthesis, 1983,4:249-282.  

    16. [16]

      G. Drivera, K.E. Johnsona. 3-Methylimidazolium bromohydrogenates(I): a roomtemperature ionic liquid for ether cleavage[J]. Green Chem., 2003,5:163-169.

    17. [17]

      M. Yamashita, A. Tani, F. Kawai. Cloning and expression of an ether-bond-cleaving enzyme involved in the metabolism of polyethylene glycol[J]. J. Biosci. Bioeng., 2004,98:313-315.

    18. [18]

      A. Atesin, N. Ray, P. Stair, T. Marks. Etheric C-O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system[J]. J. Am. Chem. Soc., 2012,134:14682-14685.

    19. [19]

      A.K. Kim, G.P. Crampton. Performance of Novec1230 in electronic facility fire protection, fire suppression and detection-A technical working conference (Proceedings of SUPDET, 2010): 16 February 2010, Orlando. Florida.

    20. [20]

      B.M. Dwight, F.R. Victor, M.R. Alan. Process for treating melt-processible tetrafluoroethylene/perfluoro(alkyl vinyl)-ether copolymers. EP, 0226668 B1, 1992.

    21. [21]

      DuPontTM GenX processing aid for making f luoropolymer resins; DuPont, 2010 http://www2.dupont.com/Industrial_Bakery_Solutions/en_GB/assets/downloads/DuPont_GenX_Brochure_Final_07July2010.pdf.

    22. [22]

      R.M. Flynn, M.G. Costello, D.R. Vitcak. Hydrofluoroether compounds and processes for their preparation and use. WO:, 2008070606, 2008.

    23. [23]

      G. Siegemun, R. Franz. Process for the preparation of perfluoropropionyl fluoride,US[J]. , 19975684193.

    24. [24]

      S.V. Kostjuk, E. Ortega, F. Ganachaud, B. Amé duri, B. Boutevin. Anionic ringopening polymerization of hexafluoropropylene oxide using alkali metal fluorides as catalysts: a mechanistic study[J]. Macromolecules, 2009,42:612-619.

    25. [25]

      Paul H. Kasai. Perfluoropolyethers: intramolecular disproportionation[J]. Macromolecules, 1992,25:6791-6799.

  • 加载中
    1. [1]

      Zhao Lian Ye Chang Qing Cao Jin Cong He Ren Xi Zhang Hui Qi Hou . Photolysis of organic pollutants in wastewater with 206 nm UV irradiation. Chinese Chemical Letters, 2009, 20(6): 706-710. doi: 10.1016/j.cclet.2008.12.033

    2. [2]

      Xiaofeng TanJun QinYan LiYuting ZengJindi GongGengxiu ZhengFeng FengHe Li . Intermetallic PdBi aerogels with improved catalytic performance for the degradation of organic pollutants in water. Chinese Chemical Letters, 2021, 32(4): 1451-1455. doi: 10.1016/j.cclet.2020.09.043

    3. [3]

      Wenxin HouShuhui WangXiuru BiXu MengPeiqing ZhaoXiang Liu . Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants. Chinese Chemical Letters, 2021, 32(8): 2513-2518. doi: 10.1016/j.cclet.2021.01.023

    4. [4]

      Wan-Kuen JoRajesh J. Tayade . Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chinese Journal of Catalysis, 2014, 35(11): 1781-1792. doi: 10.1016/S1872-2067(14)60205-9

    5. [5]

      Fang Wang Shi Xiong Min . TiO2/polyaniline composites:An efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 2007, 18(10): 1273-1277. doi: 10.1016/j.cclet.2007.08.010

    6. [6]

      Bacha Aziz-Ur-RahimNabi IqraFu ZhaoyangLi KejianCheng HanyunZhang Liwu . A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation. Chinese Chemical Letters, 2019, 30(12): 2225-2230. doi: 10.1016/j.cclet.2019.07.058

    7. [7]

      Yanshu ZhangGongke LiYufei Hu . Fabrication of bimetallic nanoparticles modified hollow nanoporous carbons derived from covalent organic framework for efficient degradation of 2, 4-dichlorophenol. Chinese Chemical Letters, 2021, 32(8): 2529-2533. doi: 10.1016/j.cclet.2021.01.031

    8. [8]

      Li-Guo SunZhuo-Ying XieYuan-Jin ZhaoHong-Mei WeiZhong-Ze Gu . Optical monitoring the degradation of PLGA inverse opal film. Chinese Chemical Letters, 2013, 24(01): 9-12.

    9. [9]

      Jing-Wen RanShao-Wen LiuPeng WuaJun Pei . Efficient photocatalytic properties of a dinuclear iron complex with bis[2-hydroxybenzaldehyde]hydrazonate ligand. Chinese Chemical Letters, 2013, 24(05): 373-375.

    10. [10]

      Zuo-Peng LiYa-Qiong WenJian-Peng ShangMei-Xia WuLong-Fei WangYong Guo . Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts:Fabrication and photocatalytic activity. Chinese Chemical Letters, 2014, 25(2): 287-291.

    11. [11]

      Jiao Xia Sun Yuan Liang Wang Shu Hua Dou . A novel positively thermo-sensitive hydrogel based on ethylenediaminetetraacetic dianhydride and piperazine:Design, synthesis and characterization. Chinese Chemical Letters, 2012, 23(1): 97-100. doi: 10.1016/j.cclet.2011.09.023

    12. [12]

      Masoumeh Tabatabaee Maria Roozbeh Mandana Roozbeh . Catalytic effect of lucunary heteropolyanion containing molybdenum and tungsten atoms on decolorization of direct blue 71. Chinese Chemical Letters, 2011, 22(12): 1501-1504. doi: 10.1016/j.cclet.2011.07.016

    13. [13]

      Shi Xiong Min Fang Wang Lei Feng Yong Chun Tong Zi Rong Yang . Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles. Chinese Chemical Letters, 2008, 19(6): 742-746. doi: 10.1016/j.cclet.2008.03.016

    14. [14]

      Xin Ce Sui Zhi Feng Fu Yan Shi . Synthesis and application of novel degradable crosslinkers. Chinese Chemical Letters, 2011, 22(3): 374-377. doi: 10.1016/j.cclet.2010.10.028

    15. [15]

      Gong Shi-QiangXue Zhen-JieLiao Shu-TengWu Ya-BoLiu Yan . The effect of NDGA-modified etchant on the enzymatic degradation resistance and mechanical properties of collagen matrix. Chinese Chemical Letters, 2018, 29(1): 205-208. doi: 10.1016/j.cclet.2017.08.036

    16. [16]

      ZHANG JiaweiWANG ShengLIU FushengFU XiaojieMA GuoquanHOU MeishunTANG Zhuo . Preparation of Defective TiO2-x Hollow Microspheres for Photocatalytic Degradation of Methylene Blue. Acta Physico-Chimica Sinica, 2019, 35(8): 885-895. doi: 10.3866/PKU.WHXB201812022

    17. [17]

      Chen GongNengzi Li-ChaoGao YingjieZhu GuixianGou JianfengCheng Xiuwen . Degradation of tartrazine by peroxymonosulfate through magnetic Fe2O3/Mn2O3 composites activation. Chinese Chemical Letters, 2020, 31(10): 2730-2736. doi: 10.1016/j.cclet.2020.02.033

    18. [18]

      Zhu MengZhang LongshuaiLiu ShanshanWang DengkeQin YuanchengChen YingDai WeiliWang YuehuaXing QiujuZou Jianping . Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chemical Letters, 2020, 31(7): 1961-1965. doi: 10.1016/j.cclet.2020.01.017

    19. [19]

      Chen JunZhan JingZhang YumengTang Yiwei . Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chinese Chemical Letters, 2019, 30(3): 735-738. doi: 10.1016/j.cclet.2018.08.020

Metrics
  • PDF Downloads(0)
  • Abstract views(274)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return