Citation: Fang Wang, Xue Li, Sheng Wang, Cheng-Peng Li, Huan Dong, Xiang Ma, Sung-Hoon Kim, De-Rong Cao. New π-conjugated cyanostilbene derivatives:Synthesis, characterization and aggregation-induced emission[J]. Chinese Chemical Letters, ;2016, 27(10): 1592-1596. doi: 10.1016/j.cclet.2016.04.020 shu

New π-conjugated cyanostilbene derivatives:Synthesis, characterization and aggregation-induced emission

Figures(6)

  • Two novel π-conjugated cyanostilbene derivatives, FLU-CNPH and TPE-CNPH, were designed and synthesized by introducing the strong electron donor 1, 4-dihydropyrro[3, 2-b]indole and AIE electron donor tetraphenylethylene (TPE) to the (30,50-bis(trifluoromethyl)-biphenyl-4-yl)-acetonitrile, respectively. Both of them were fully characterized and their AIE behaviors were investigated using fluorescence spectroscopy and FE-SEM images. Their optimized structures and frontier molecular orbitals were calculated with the DFT by using Materials Studio 7.0 software to study the relationship between the structure and properties.
  • 加载中
    1. [1]

      J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang. Aggregation-induced emission:together we shine, united we soar[J]. Chem. Rev., 2015,115:11718-11940. doi: 10.1021/acs.chemrev.5b00263

    2. [2]

      Y. Hong, J.W.Y. Lamab, B.Z. Tang. Aggregation-induced emission[J]. Chem. Soc. Rev., 2011,40:5361-5388. doi: 10.1039/c1cs15113d

    3. [3]

      R. Hu, N.L. Leung, B.Z. Tang. AIE macromolecules:syntheses, structures and functionalities,[J]. Chem. Soc. Rev, 2014,43:4494-4562. doi: 10.1039/c4cs00044g

    4. [4]

      J. Mei, Y. Hong, J.W. Lam. Aggregation-induced emission:the whole is more brilliant than the parts[J]. Adv. Mater., 2014,26:5429-5479. doi: 10.1002/adma.201401356

    5. [5]

      J. Luo, Z. Xie, J.W.Y. Lam. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun, 2001:1740-1741.  

    6. [6]

      J. Liang, B.Z. Tang, B. Liu. Specific light-up bioprobes based on AIEgen conjugates[J]. Chem. Soc. Rev., 2015,44:2798-2811. doi: 10.1039/C4CS00444B

    7. [7]

      A. Ozawa, A. Shimizu, R. Nishiyabu, Y. Kubo. Thermo-responsive white-light emission based on tetraphenylethylene- and rhodamine B-containing boronate nanoparticles[J]. Chem. Commun., 2015,51:118-121. doi: 10.1039/C4CC07405J

    8. [8]

      X. Zhang, X. Zhang, B. Yang, Y. Zhang, Y. Wei. A new class of red fluorescent organic nanoparticles:noncovalent fabrication and cell imaging applications[J]. ACS Appl. Mater. Interfaces, 2014,6:3600-3606. doi: 10.1021/am4058309

    9. [9]

      J. Geng, Z. Zhu, W. Qin. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging[J]. Nanoscale, 2014,6:939-945. doi: 10.1039/C3NR04243J

    10. [10]

      H. Lu, B. Xu, Y. Dong. Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics[J]. Langmuir, 2010,26:6838-6844. doi: 10.1021/la904727t

    11. [11]

      H. Li, X. Zhang, Z. Chi. New thermally stable piezofluorochromic aggregation-induced emission compounds[J]. Org. Lett., 2011,13:556-559. doi: 10.1021/ol102872x

    12. [12]

      Y.L. Zhang, J. Li, B.Z. Tang, K.S. Wong. Aggregation enhancement on two-photon optical properties of AIE-active D-TPE-A molecules[J]. J. Phys. Chem. C, 2014,118:26981-26986. doi: 10.1021/jp507482u

    13. [13]

      X. Zhang, X. Zhang, L. Tao. Aggregation induced emission-based fluorescent nanoparticles:fabrication methodologies and biomedical applications[J]. J. Mater. Chem. B, 2014,2:4398-4414.  

    14. [14]

      A. Kathiravan, K. Sundaravel, M. Jaccob. Pyrene Schiff base:photophysics, aggregation induced emission and antimicrobial properties[J]. J. Phys. Chem. B, 2014,118:13573-13581. doi: 10.1021/jp509697n

    15. [15]

      Y. Dong, J.W. Lam, A. Qin. Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene[J]. Chem. Commun, 2007:3255-3257.  

    16. [16]

      P. Zhang, H. Wang, H. Liu, M. Li. Fluorescence-enhanced organogels and mesomorphic superstructure based on hydrazine derivatives[J]. Langmuir, 2010,26:10183-10190. doi: 10.1021/la100325c

    17. [17]

      J. Liu, Y. Zhong, J.W.Y. Lam. Hyperbranched conjugated polysiloles:synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosive[J]. Macromolecules, 2010,43:4921-4936. doi: 10.1021/ma902432m

    18. [18]

      Z. Zhao, J.W.Y. Lam, B.Z. Tang. Tetraphenylethene:a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes[J]. J. Mater. Chem., 2012,2223726. doi: 10.1039/c2jm31949g

    19. [19]

      B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. J. Am. Chem. Soc., 2002,124:14410-14415. doi: 10.1021/ja0269082

    20. [20]

      G. Kwak, S. Wang, M.S. Choi. 2D-p-A type pyran-based dye derivatives:photophysical properties related to intramolecular charge transfer and their electroluminescence application[J]. Dyes Pigments, 2008,78:25-33. doi: 10.1016/j.dyepig.2007.10.003

    21. [21]

      H. Tong, Y. Dong, M. Haussler. Tunable aggregation-induced emission of diphenyldibenzofulvenes[J]. Chem. Commun, 2006:1133-1135.  

    22. [22]

      H. Zhou, J. Li, M. Chua. Poly(acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics:highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds[J]. Polym. Chem., 2014,5:5628-5637. doi: 10.1039/C4PY00518J

    23. [23]

      Q. Zeng, Z. Li, Y. Dong. Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects[J]. Chem. Commun, 2007:70-72.  

    24. [24]

      R. Hu, E. Lager, A.L. Aguilar-Aguilar. Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives[J]. J. Phys. Chem. C, 2009,113:15845-15853. doi: 10.1021/jp902962h

    25. [25]

      B.K. An, J. Gierschner, S.Y. Park. π-Conjugated cyanostilbene derivatives:a unique self-assembly motif for molecular nanostructures with enhanced emission and transport[J]. Acc. Chem. Res, 2012,45:544-554. doi: 10.1021/ar2001952

    26. [26]

      Z. Song, R.T. Kwok, E. Zhao. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells[J]. ACS Appl. Mater. Interfaces, 2014,6:1245-17254.

    27. [27]

      S.K. Park, J.H. Kim, S.J. Yoon. High-performance n-type organic transistor with a solution-processed and exfoliation-transferred two-dimensional crystalline layered film[J]. Chem. Mater., 2012,24:3263-3268. doi: 10.1021/cm301775c

    28. [28]

      Y. Yu, Q. Shi, Y. Li. Solid supramolecular architecture of a perylene diimide derivative for fluorescent enhancement chemistry[J]. Chem. Asian J., 2012,7:2904-2911. doi: 10.1002/asia.201200659

    29. [29]

      Y. Li, T. Liu, H. Liu, M.Z. Tian, Y. Li. Self-assembly of intramolecular chargetransfer compounds into functional molecular systems[J]. Acc. Chem. Res., 2014,47:1186-1198. doi: 10.1021/ar400264e

    30. [30]

      C.K. Lim, S. Kim, I.C. Kwon, C.H. Ahn, S.Y. Park. Dye-condensed biopolymeric hybrids:chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging[J]. Chem. Mater., 2009,21:5819-5825. doi: 10.1021/cm902379x

    31. [31]

      J.W. Chung, Y. You, H.S. Huh. Shear- and UV-induced fluorescence switching in stilbenic p-dimer crystals powered by reversible[J]. J. Am. Chem. Soc., 2009,131:8163-8172. doi: 10.1021/ja900803d

    32. [32]

      H. Li, D.H. Qu. Recent advances in new-type molecular switches[J]. Sci. China Chem., 2015,58:916-921. doi: 10.1007/s11426-015-5417-7

    33. [33]

      T.T., X.Y., J., Q.C., X., A. cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness[J]. Chin. Chem. Lett, 2015,26:867-871. doi: 10.1016/j.cclet.2015.01.032

    34. [34]

      J.W. Chung, H. Yang, B. Singh. Single-crystalline organic nanowires with large mobility and strong fluorescence emission:a conductive-AFM and spacecharge-limited-current study[J]. J. Mater. Chem, 2009,19:5920-5925. doi: 10.1039/b903882e

    35. [35]

      J.W. Chung, B.K. An, S.Y. Park. A thermoreversible and proton-induced gel-sol phase transition with remarkable fluorescence variation[J]. Chem. Mater, 2008,20:6750-6755. doi: 10.1021/cm8019186

    36. [36]

      X. Yang, Z.T. Pan, Y. Ma. Rhodamine B as standard substance to measure the fluorescence-quantum yield of dichlorofluorescein[J]. J. Anal. Sci., 2003,19:588-589.

  • 加载中
    1. [1]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    5. [5]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    10. [10]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    15. [15]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    16. [16]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    17. [17]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    18. [18]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    19. [19]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    20. [20]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

Metrics
  • PDF Downloads(4)
  • Abstract views(706)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return