Citation: Bao-Shou Shen, Hao Wang, Li-Jun Wu, Rui-Sheng Guo, Qing Huang, Xing-Bin Yan. All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide[J]. Chinese Chemical Letters, ;2016, 27(10): 1586-1591. doi: 10.1016/j.cclet.2016.04.012 shu

All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide

  • Corresponding author: Qing Huang, huangqing@nimte.ac.cn Xing-Bin Yan, xbyan@licp.cas.cn
  • Received Date: 25 March 2016
    Revised Date: 11 April 2016
    Accepted Date: 14 April 2016
    Available Online: 23 October 2016

Figures(5)

  • MXenes, serving as a novel family of two-dimensional (2D) metal carbides, have attracted great research interest as one of the promising electrode materials due to the unique properties. However, to our best knowledge, the 2D titanium carbide (one kind of MXene) used in constructing microsupercapacitors (MSCs) has not yet been reported to date. To this end, we firstly produce the MXene films on various kinds of substrates including polyethylene terephthalate (PET), silicon oxide film and titanium plate through vacuum-filtrating and subsequent controlled transferring. On this basis, flexible all-solid-state symmetric MSCs on PET substrate based on MXene films are fabricated by micro-fabrication process using polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. The results show that the as-made MSC has an ultrahigh rate performance with the scan rate of up to 1000 V s-1 as well as an ultrafast frequency response (τ0=0.5 ms). In addition, the MSC delivers a large volumetric capacitance of 1.44 F cm-3, a high volumetric energy density (0.2 mWh cm-3) at the current density of 0.288 A cm-3 and a good cycling stability. Our research results presented here may pave the way for a new potential application of MXene in micro-power suppliers and micro-energy storage devices.
  • 加载中
    1. [1]

      P. Huang, C. Lethien, S. Pinaud. On-chip and free standing elastic carbon films for micro-supercapacitors[J]. Science, 2016,351:691-695. doi: 10.1126/science.aad3345

    2. [2]

      M.F. El-Kady, R.B. Kaner. Scalable fabrication of high-power graphene microsupercapacitors for flexible and on-chip energy storage[J]. Nat. Commun., 2013,41475. doi: 10.1038/ncomms2446

    3. [3]

      B.S. Shen, J.W. Lang, R.S. Guo, X. Zhang, X.B. Yan. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Appl. Mater. Interfaces, 2015,7:25378-25389. doi: 10.1021/acsami.5b07909

    4. [4]

      C. Zhong, Y.D. Deng, W.B. Hu. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev, 2015,44:7484-7539. doi: 10.1039/C5CS00303B

    5. [5]

      M.J. Shi, S.Z. Kou, B.S. Shen. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge[J]. Chin. Chem. Lett., 2014,25:859-864. doi: 10.1016/j.cclet.2014.04.010

    6. [6]

      L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chin. Chem. Lett., 2014,25:957-961. doi: 10.1016/j.cclet.2014.05.032

    7. [7]

      J.J. Cai, L.B. Kong, J. Zhang, Y.C. Luo, L. Kang. A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor[J]. Chin. Chem. Lett, 2012,21:1509-1512.  

    8. [8]

      Z.S. Wu, K. Parvez, S. Li. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors[J]. Adv. Mater., 2015,27:4054-4061. doi: 10.1002/adma.201501643

    9. [9]

      W.W. Liu, X.B. Yan, J.T. Chen, Y.Q. Feng, Q.J. Xue. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers[J]. Nanoscale, 2013,5:6053-6062. doi: 10.1039/c3nr01139a

    10. [10]

      W.W. Liu, C.X. Lu, H.L. Li. Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities[J]. J. Mater. Chem. A, 2016,4:3754-3764. doi: 10.1039/C6TA00159A

    11. [11]

      W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue. Superior micro-supercapacitors based on graphene quantum dots[J]. Adv. Funct. Mater., 2013,23:4111-4122. doi: 10.1002/adfm.v23.33

    12. [12]

      Z.S. Wu, Z.Y. Liu, K. Parvez, X.L. Feng, K. Mü llen. Ultrathin printable graphene supercapacitors with AC line-filtering performance[J]. Adv. Mater., 2015,27:3669-3675. doi: 10.1002/adma.v27.24

    13. [13]

      Z.Y. Liu, Z.S. Wu, S. Yang. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene[J]. Adv. Mater., 2016,28:2217-2222. doi: 10.1002/adma.201505304

    14. [14]

      Z.Q. Niu, L. Zhang, L.L. Liu. All-solid-state flexible ultrathin micro-supercapacitors based on graphene[J]. Adv. Mater., 2013,25:4035-4042. doi: 10.1002/adma.v25.29

    15. [15]

      W. Gao, N. Singh, L. Song. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat. Nanotechnol., 2011,6:496-500. doi: 10.1038/nnano.2011.110

    16. [16]

      M.R. Lukatskaya, S.M. Bak, X.Q. Yu. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy[J]. Adv. Energy Mater., 2015,51500589. doi: 10.1002/aenm.201500589

    17. [17]

      M. Naguib, J. Halim, J. Lu. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. J. Am. Chem. Soc., 2013,135:15966-15969. doi: 10.1021/ja405735d

    18. [18]

      Z.Y. Lin, D.F. Sun, Q. Huang. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries[J]. J. Mater. Chem. A, 2015,3:14096-14100. doi: 10.1039/C5TA01855B

    19. [19]

      D.Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6:11173-11179. doi: 10.1021/am501144q

    20. [20]

      Y. Dall'Agnese, P.L. Taberna, Y. Gogotsi, P. Simon. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors[J]. J. Phys. Chem. Lett., 2015,6:2305-2309. doi: 10.1021/acs.jpclett.5b00868

    21. [21]

      X.F. Wang, S. Kajiyama, H. Iinuma. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat. Commun., 2015,66544. doi: 10.1038/ncomms7544

    22. [22]

      M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014,516:78-81.  

    23. [23]

      M.Q. Zhao, C.E. Ren, Z. Ling. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Adv. Mater., 2015,27:339-345. doi: 10.1002/adma.v27.2

    24. [24]

      Y. Xie, Y. Dall'Agnese, M. Naguib. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano, 2014,8:9606-9615. doi: 10.1021/nn503921j

    25. [25]

      S. Kajiyama, L. Szabova, K. Sodeyama. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano, 2016,10:3334-3341. doi: 10.1021/acsnano.5b06958

    26. [26]

      Z. Ling, C.E. Ren, M.Q. Zhao. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proc. Natl. Acad. Sci. U.S.A., 2014,111:16676-16681. doi: 10.1073/pnas.1414215111

    27. [27]

      J. Halim, M.R. Lukatskaya, K.M. Cook. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chem. Mater., 2014,26:2374-2381. doi: 10.1021/cm500641a

    28. [28]

      X. Zhang, X.B. Yan, J.T. Chen, J.P. Zhao. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters[J]. Carbon, 2014,69:437-443. doi: 10.1016/j.carbon.2013.12.046

    29. [29]

      J. Halim, K.M. Cook, M. Naguib. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)[J]. Appl. Surf. Sci, 2016,362:406-417. doi: 10.1016/j.apsusc.2015.11.089

    30. [30]

      M. Naguib, M. Kurtoglu, V. Presser. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv. Mater., 2011,23:4248-4253. doi: 10.1002/adma.201102306

    31. [31]

      S. Myhra, J.A.A. Crossley, M.W. Barsoum. Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases-characterization by XPS[J]. J. Phys. Chem. Solids, 2001,62:811-817. doi: 10.1016/S0022-3697(00)00268-7

    32. [32]

      J. Lin, C.G. Zhang, Z. Yan. 3-Dimensional graphene carbon nanotube carpetbased microsupercapacitors with high electrochemical performance[J]. Nano Lett, 2013,13:72-78. doi: 10.1021/nl3034976

    33. [33]

      D. Pech, M. Brunet, H. Durou. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat. Nanotechnol., 2010,5:651-654. doi: 10.1038/nnano.2010.162

    34. [34]

      M. Beidaghi, C.L. Wang. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Adv. Funct. Mater., 2012,22:4501-4510. doi: 10.1002/adfm.v22.21

    35. [35]

      D. Pech, M. Brunet, P.L. Taberna. Elaboration of a microstructured inkjetprinted carbonelectrochemical capacitor[J]. J. Power Sources, 2010,195:1266-1269. doi: 10.1016/j.jpowsour.2009.08.085

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    5. [5]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    6. [6]

      Hongfei LiHao ChenQi KangLihe GuoXingyi HuangHaiping Xu . Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025, 36(9): 110325-. doi: 10.1016/j.cclet.2024.110325

    7. [7]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    8. [8]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    9. [9]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    10. [10]

      Ruijun SongHuixu XieGuiting Liu . Advances of MXene-based hydrogels for chronic wound healing. Chinese Chemical Letters, 2025, 36(7): 110442-. doi: 10.1016/j.cclet.2024.110442

    11. [11]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    12. [12]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    13. [13]

      Haiyan WangHucheng ZhangLijing WangYonghui LiTianhao ZhangZhansheng LuHao JiangChunzhong LiJianji Wang . Ti3C2Tx MXene-mediating near- and long-range electronic effect on atomically dispersed Co for efficient lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110373-. doi: 10.1016/j.cclet.2024.110373

    14. [14]

      Jing LiuFei WangHuijie WeiYong LiuXiaoliang ZhaiSifan WenQiaobao Zhang . Fabrication and application of binder-free cathodes in high-performance lithium-chalcogen (S, Se, Te) batteries: A review. Chinese Chemical Letters, 2025, 36(11): 110475-. doi: 10.1016/j.cclet.2024.110475

    15. [15]

      Yuanhua XiaoJinhui ShouShiwei ZhangYa ShenJunwei LiuDangcheng SuYang KongXiaodong JiaQingxiang YangShaoming FangXuezhao Wang . Synergistic interlayer confinement and built-in electric field construct reconstruction-inhibited cobalt selenide for robust oxygen evolution at high current density. Chinese Chemical Letters, 2025, 36(11): 111441-. doi: 10.1016/j.cclet.2025.111441

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    18. [18]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    19. [19]

      Linnan JiangZhenkai QianYong ChenXiaoyong YuYugui QiuWen-Wen XuYonghui SunXiufang XuLihua WangYu Liu . Double response reversible phosphorescence based on cyclodextrin supramolecular flexible elastic achieved multicolor delayed fluorescence. Chinese Chemical Letters, 2025, 36(8): 110676-. doi: 10.1016/j.cclet.2024.110676

    20. [20]

      Xiaojun WangYizhou ZhangLinwei GuoJianwei LiPeng WangLei YangZhiming Liu . V2CTX MXene-derived ammonium vanadate with robust carbon skeleton for superior rate aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(8): 111231-. doi: 10.1016/j.cclet.2025.111231

Metrics
  • PDF Downloads(3)
  • Abstract views(1321)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return