Citation: Wei Zhi-Dong, Wang Rui. Hierarchical BiOBr microspheres with oxygen vacancies synthesized via reactable ionic liquids for dyes removal[J]. Chinese Chemical Letters, ;2016, 27(5): 769-772. doi: 10.1016/j.cclet.2016.03.013 shu

Hierarchical BiOBr microspheres with oxygen vacancies synthesized via reactable ionic liquids for dyes removal

  • Corresponding author: Wang Rui, gqyan@126.com
  • Received Date: 18 February 2016
    Revised Date: 4 March 2016
    Accepted Date: 9 March 2016
    Available Online: 16 May 2016

Figures(6)

  • Hierarchical BiOBr microspheres with oxygen vacancies, which can be used for the dyes removal, have been synthesized successfully in the presence of different kinds of ionic liquids. It was revealed that BiOBr prepared by the ionic liquids with short chain length exhibited higher photocatalytic activity in the degradation of methyl orange (MO) under visible light. The experimental results showed that the phenomenon of the photocatalytic degradation of MO can be explained by the photoluminescence spectra.
  • 加载中
    1. [1]

      Fujishima A., Honda K.. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.

    2. [2]

      Guo S.Y., Han S., Mao H.F.. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals:The role of microporous amorphous/crystalline composite structure[J]. J. Power Sources, 2014,245:979-985.

    3. [3]

      Song Z., Li Q., Gao L.. Preparation and properties of nano-TiO2 powders[J]. Mater. Sci. Technol., 1997,13:321-323.

    4. [4]

      Wei Z.D., Wang R.. Preparation and photocatalytic activities of nanocomposites of MCNTs/TiO2 and MCNTs-phosphotungstic acid/TiO2[J]. Petroleum and Coal, 2014,56:475-479.

    5. [5]

      Zhang D., Li J., Wang Q.G., Wu Q.G.. High {001} facets dominated BiOBr lamellas:facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. J. Mater. Chem. A, 2013,1:8622-8629.

    6. [6]

      Fang Y.F., Huang Y.P., Yang J., Wang P., Cheng G.W.. Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water[J]. Environ. Sci. Technol., 2011,45:1593-1600.

    7. [7]

      Zhang X., Ai Z., Jia F., Zhang L.. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microsheres[J]. J. Phys. Chem. C, 2008,112:747-753.

    8. [8]

      Deng Z.T., Chen D., Peng B., Tang F.Q.. From bulk metal Bi to two-dimensional wellcrystallized BiOX (X=Cl, Br) micro- and nanostructures:synthesis and characterization[J]. Cryst. Growth Des., 2008,8:2995-3003.

    9. [9]

      Wang J.W., Li Y.D.. Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions[J]. Chem. Commun., 2003,18:2320-2321.

    10. [10]

      (a) J. Zhang, F.J. Shi, J. Lin, et al., Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst, Chem. Mater. 20(2008) 2937-2941;
      (b) Z. Jiang, F. Yang, G.D. Yang, et al., The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange, J. Photochem. Photobiol. A 212(2010) 8-13.

    11. [11]

      Feng Y.C., Li L., Li J.W., Wang J.F., Liu L.. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. J. Hazard. Mater., 2011,192:538-544.

    12. [12]

      Ai Z.H., Ho W.K., Lee S.C., Zhang L.Z.. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Technol., 2009,43:4143-4150.

    13. [13]

      Zhang D.Q., Wen M.C., Jiang B., Li G.S., Yu J.C.. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J]. J. Hazard. Mater. 211-, 2012,212:104-111.

    14. [14]

      Wang Y.N., Deng K.J., Zhang L.Z.. Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification[J]. J. Phys. Chem. C, 2011,115:14300-14308.

    15. [15]

      Caruso F.. Nanoengineering of particle surfaces[J]. Adv. Mater., 2001,13:11-22.

    16. [16]

      R. Katoh, M. Hara, S. Tsuzuki, Ion pair formation in[bmim]I ionic liquids, J. Phys. Chem. B 112(2008) 15426-15430.

    17. [17]

      Guo S.J., Dong S.J., Wang E.K.. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Adv. Mater., 2010,22:1269-1272.

    18. [18]

      Mao D.J., Lü X.M., Jiang Z.F.. Ionic liquid-assisted hydrothermal synthesis of square BiOBr nanoplates with highly efficient photocatalytic activity[J]. Mater. Lett., 2014,118:154-157.

    19. [19]

      Khatri O.P., Adachi K., Murase K.. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface:chemical and structural aspects[J]. Langmuir, 2008,24:7785-7792.

    20. [20]

      Xia J.X., Yin S., Li H.M.. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Trans., 2011,40:5249-5258.

    21. [21]

      Jing L.Q., Xin B.F., Wang D.J.. Relationships between photoluminescence performance and photocatalytic activity of ZnO and TiO2 nanoparticles[J]. Chem. J. Chin. Univ., 2005,26:111-115.

    22. [22]

      Li H., Shang J., Ai Z.H., Zhang L.Z.. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J. Am. Chem. Soc., 2015,137:6393-6399.

  • 加载中
    1. [1]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    2. [2]

      Shuangyu WuJian PengYue JiangSijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819

    3. [3]

      Siyang XueChen ChengJieqiong KangKaixuan ZhengAdela Jing LiRenli Yin . Oxygen vacancies-rich BiOBr bridged direct electron transfer with peroxymonosulfate for integrating superoxide radical and singlet oxygen on selective pollutants degradation. Chinese Chemical Letters, 2025, 36(10): 110776-. doi: 10.1016/j.cclet.2024.110776

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    10. [10]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    11. [11]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    12. [12]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    13. [13]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    14. [14]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    15. [15]

      Mengyu ChenQinglin ZhouTianyun QinNingyao SunYuxi ChenYuwei GongXingyi LiJinsong Liu . An ionic liquid-reinforced gelatin hydrogel with strong adhesion, antibacterial and anti-inflammatory properties for treating oral ulcers. Chinese Chemical Letters, 2025, 36(7): 110441-. doi: 10.1016/j.cclet.2024.110441

    16. [16]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    17. [17]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    18. [18]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    19. [19]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    20. [20]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

Metrics
  • PDF Downloads(2)
  • Abstract views(1219)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return