Citation: Chun-Xian He, Zhi-Bo Jiang, Hua-Qing Cui, Da-Li Yin. A nucleophilic 1, 3-rearrangement leading to 3, 4-disubstituted 3, 4-dihydroquinolines[J]. Chinese Chemical Letters, ;2016, 27(7): 1036-1039. doi: 10.1016/j.cclet.2016.02.030 shu

A nucleophilic 1, 3-rearrangement leading to 3, 4-disubstituted 3, 4-dihydroquinolines

  • Corresponding author: Da-Li Yin, yindali@imm.ac.cn
  • Received Date: 9 December 2015
    Revised Date: 3 February 2016
    Accepted Date: 18 February 2016
    Available Online: 14 July 2016

Figures(6)

  • A new nucleophilic 1, 3-rearrangement is observed when treating 2-methoxyquinolino-3-lithium with an α-C substituted deoxybenzoin, and this rearrangement yielded an unusual 3, 4-disubstituted 3, 4-dihydroquinoline. Several similar reactions were designed and executed to investigate this novel 1, 3-rearrangement, and a mechanism involving a nucleophilic addition and a following 1, 3-rearrangement with an unusual dearomatization on the quinoline ring is proposed.
  • 加载中
    1. [1]

      M. Ló pez-García, I. Alfonso, V. Gotor. Synthesis of (R)-3, , 4-diaminobutanoic acid by desymmetrization of dimethyl 3-(benzylamino)glutarate through enzymatic ammonolysis[J]. J. Org. Chem., 2002,68:648-651.  

    2. [2]

      M. Ochiai, T. Okada, N. Tada, A. Yoshimura, K. Miyamoto, M. Shiro, Difluoro-λ3-bromane-induced Hofmann rearrangement of sulfonamides: synthesis of sulfamoyl fluorides, J. Am. Chem. Soc. 131 (2009) 8392-8393.

    3. [3]

      A.B. Smith, I.G. Safonov, R.M. Corbett, Total syntheses of (+)-zampanolide and (+)-dactylolide exploitinga unifiedstrategy, J.Am.Chem.Soc.124(2002) 11102-11113.

    4. [4]

      A. Carrë r, J.C. Florent, E. Auvrouin, P. Rousselle, E. Bertounesque. Synthesis of, 3-aryl-2-arylamidobenzofurans based on the curtius rearrangement[J]. J. Org. Chem., 2011,76:2502-2520. doi: 10.1021/jo102265b

    5. [5]

      D.G. Hilmey, L.A. Paquette, Promoter-dependent course of the Beckmann rearrangement of stereoisomeric spiro[4.4]nonane-1, 6-dione monoximes, Org. Lett. 7 (2005) 2067-2069.

    6. [6]

      Y. Furuya, K. Ishihara, H. Yamamoto. Cyanuric chloride as a mild and active Beckmann rearrangement catalyst[J]. J. Am. Chem. Soc., 2005,127:11240-11241. doi: 10.1021/ja053441x

    7. [7]

      J.S. Kingsbury, E.J. Corey. Enantioselective total synthesis of isoedunol and β-araneosene featuring unconventional strategy and methodology[J]. J. Am. Chem. Soc., 2005,127:13813-13815. doi: 10.1021/ja055137+

    8. [8]

      K. Suzuki, H. Takikawa, Y. Hachisu, J.W. Bode. Isoxazole-directed pinacol rearrangement: stereocontrolled approach to angular stereogenic centers[J]. Angew. Chem. Int. Ed., 2007,46:3252-3254. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      S. Braverman, M. Cherkinsky, E.V.K. Suresh Kumar, H.E. Gottlieb. Rearrangements of trihalomethyl ketones[J]. Tetrahedron, 2000,56:4521-4529. doi: 10.1016/S0040-4020(00) 00360-4

    10. [10]

      A.S. Ionkin, W.J. Marshall, B.M. Fish. Highly sterically hindered olefins: a case of E- and Z-di-tert-butyl a, b-unsaturated acids[J]. Org. Lett., 2008,10:2303-2305. doi: 10.1021/ol800808g

    11. [11]

      K. Andries, P. Verhasselt, J. Guillemont, H.W. Gohlmann, J.M. Neefs, H. Winkler, J. Van Gestel, P. Timmerman, M. Zhu, E. Lee, P. Williams, D. de Chaffoy, E. Huitric, S. Hoffner, E. Cambau, C. Truffot-Pernot, N. Lounis, V. Jarlier. A diarylquinoline drug active on the ATP synthase of mycobacterium tuberculosis[J]. Science, 2005,307:223-227. doi: 10.1126/science.1106753

    12. [12]

      J. Guillemont, C. Meyer, A. Poncelet, X. Bourdrez, K. Andries, Diarylquinolines, synthesis pathways and quantitative structure-activity relationship studies leading to the discovery of TMC207, Future Med. Chem. 3 (2011) 1345-1360.

    13. [13]

      A.Matteelli, A.C.C. Carvalho, K.E.Dooley, A. Kritski, TMC207: the first compound of a new class of potent anti-tuberculosis drugs, Future Microbiol. 5 (2010) 849-858.

    14. [14]

      C.X. He, H. Meng, X. Zhang, H.Q. Cui, D.L. Yin. Synthesis and bio-evaluation of phenothiazine derivatives as new anti-tuberculosis agents[J]. Chin. Chem. Lett., 2015,26:951-954. doi: 10.1016/j.cclet.2015.03.027

    15. [15]

      M. Yutaka, T. Sakae, N. Yoshiharu, H. Masatomo, Reactions of 3-substituted quinoline 1-oxides with acylating agents, Heterocycles 32 (1991) 1579-1586.

  • 加载中
    1. [1]

      Ju Wang Zuo Yin Yang Xiu Li Wang Jing Chang Zhang Wei Liang Cao . Theoretical study on conformational conversion of 1,3-dioxane inside a capsular host. Chinese Chemical Letters, 2007, 18(2): 244-246. doi: 10.1016/j.cclet.2006.12.039

    2. [2]

      Lu FanYang JieZhou LingWang XinyueYang YinLi Jumei . Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage. Chinese Chemical Letters, 2019, 30(12): 2017-2020. doi: 10.1016/j.cclet.2019.04.019

    3. [3]

      Zou HongyanWang Zhong-LiangCao YangHuang Genping . Mechanism of rhodium(Ⅲ)-catalyzed formal C(sp3)-H activation/spiroannulation of α-arylidene pyrazolones with alkynes:A computational study. Chinese Chemical Letters, 2018, 29(9): 1355-1358. doi: 10.1016/j.cclet.2017.10.034

    4. [4]

      Iker AGIRREZABAL-TELLERIACristina GARCÍA-SANCHOPedro MAIRELES-TORRESPedro Luis ARIAS . Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping. Chinese Journal of Catalysis, 2013, 34(7): 1402-1406. doi: 10.1016/S1872-2067(12)60599-3

    5. [5]

      ZHAO YueCUI JiatongHU JichuangMA Jiabi . Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length. Acta Physico-Chimica Sinica, 2019, 35(5): 531-538. doi: 10.3866/PKU.WHXB201805231

    6. [6]

      CHEN BihuaELAGEED Elnazeer H. M.ZHANG YongyaGAO Guohua . BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones. Acta Physico-Chimica Sinica, 2018, 34(8): 952-958. doi: 10.3866/PKU.WHXB201803081

    7. [7]

      Xu Xin-MingChen De-MaoWang Zu-Li . Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions. Chinese Chemical Letters, 2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048

    8. [8]

      Wang YangLan Yu . Mechanism and origin of diastereoselectivity of N-heterocyclic carbene-catalyzed cross-benzoin reaction: A DFT study. Chinese Chemical Letters, 2020, 31(3): 736-738. doi: 10.1016/j.cclet.2019.08.010

    9. [9]

      REN ChunxingLI XiaoxiaGUO Li . Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261

    10. [10]

      Sun GuanghuiJin YuekangWang ZhengmingXu HongChai PengHuang Weixin . Site-and surface species-dependent propylene oxidation with molecular oxygen on gold surface. Chinese Chemical Letters, 2018, 29(12): 1883-1887. doi: 10.1016/j.cclet.2018.10.027

    11. [11]

      Li JunLi YangjuXiong ZhaokunYao GangLai Bo . The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chinese Chemical Letters, 2019, 30(12): 2139-2146. doi: 10.1016/j.cclet.2019.04.057

    12. [12]

      Nimai SilangZhang HengWu ZelinLi NaiwenLai Bo . Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate. Chinese Chemical Letters, 2020, 31(10): 2657-2660. doi: 10.1016/j.cclet.2020.08.008

    13. [13]

      Mengna CaoHujun Xie . Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions. Chinese Chemical Letters, 2021, 32(1): 319-327. doi: 10.1016/j.cclet.2020.04.005

    14. [14]

      Yu ChenXiao ZhangFang LiuGucheng HeJu ZhangK.N. HoukAmos B. Smith ⅢYong Liang . The role of CuI in the siloxane-mediated Pd-catalyzed cross-coupling reactions of aryl iodides with aryl lithium reagents. Chinese Chemical Letters, 2021, 32(1): 441-444. doi: 10.1016/j.cclet.2020.05.009

    15. [15]

      Jiali PengYongli HeChenying ZhouShijun SuBo Lai . The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. Chinese Chemical Letters, 2021, 32(5): 1626-1636. doi: 10.1016/j.cclet.2020.10.026

    16. [16]

      Hongjun DongNing SongMing YanHuihui WuHaibo ZhangChangchang MaYun Wang . Fabrication of HRP/Bi2WO6 photoenzyme-coupled artificial catalytic system for efficiently degrading bisphenol A. Chinese Chemical Letters, 2021, 32(6): 2047-2051. doi: 10.1016/j.cclet.2020.11.015

    17. [17]

      Dong LiuShengtao ChenRenjie LiTianyou Peng . Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion. Acta Physico-Chimica Sinica, 2021, 37(6): 2010017-0. doi: 10.3866/PKU.WHXB202010017

    18. [18]

      Bai Ling XU Zong Ru GUO Xiao Tian LIANG Guang Zhong YANG . Study on the Mechanism of the Rearrangement Reaction of 3-n-Butylphthalide by Deuterium-Labelling. Chinese Chemical Letters, 1997, 8(6): 479-482.

    19. [19]

      ZHU Yuan-QiangGUO Jian-ChunYE Zhong-Bin . AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne. Acta Physico-Chimica Sinica, 2011, 27(09): 2043-2050. doi: 10.3866/PKU.WHXB20110921

    20. [20]

      YANG ShuYANG Xiao-MeiXIE Xiao-Guang . Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO. Acta Physico-Chimica Sinica, 2012, 28(08): 1892-1898. doi: 10.3866/PKU.WHXB201205241

Metrics
  • PDF Downloads(0)
  • Abstract views(218)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return