Citation: Dan-Ting Tan, Xu Shao, Shu-Feng Pang, Yun-Hong Zhang. The effect of CTAB on Na2SO4 nucleation in mixed Na2SO4/CTAB aerosols by FTIR-ATR technology[J]. Chinese Chemical Letters, ;2016, 27(7): 1073-1076. doi: 10.1016/j.cclet.2016.02.019 shu

The effect of CTAB on Na2SO4 nucleation in mixed Na2SO4/CTAB aerosols by FTIR-ATR technology

  • Corresponding author: Shu-Feng Pang, 
  • Received Date: 27 January 2016
    Revised Date: 21 February 2016
    Accepted Date: 23 February 2016
    Available Online: 2 July 2016

Figures(4)

  • FTIR-ATR technology is used to study the efflorescence kinetic of Na2SO4 and mixed Na2SO4/CTAB aerosols. As the RH decreased linearly, the ν3-SO4-2 band shifts from 1094 cm-1 to 1132 cm-1, suggesting the phase transition of Na2SO4 from solution to crystal phase (Ⅲ). For pure Na2SO4 aerosols, the ERH is 75.1% RH, whereas the efflorescence point ofmixed Na2SO4/CTAB aerosols (74.2%) is lower. By further analysis of IR differential spectra, the ratio of Na2SO4 crystals in mixed aerosols is only 62.7% and the heterogeneous nucleation rate of Na2SO4 in Na2SO4/CTAB mixed aerosols is lower than that in pure Na2SO4 aerosols. They showed that CTAB assembled into reversed micelle and part Na2SO4 droplets are in the core to form core-shell structure, and CTAB shell prevents core Na2SO4 solutions from crystallizing. However, the counter ion Br- for CTAB reversed micelle can interact with Na+ ions, which decreases the crystallization rate of free Na2SO4 droplets and ERH is delayed.
  • 加载中
    1. [1]

      R. Makkonen, A. Asmi, V.M. Kerminen. , Air pollution control and decreasing new particle formation lead to strong climate warming[J]. Atmos. Chem. Phys., 2012,12:1515-1524. doi: 10.5194/acp-12-1515-2012

    2. [2]

      C.K. Chan, Z.Y. Ha, M.Y. Choi. Study of water activities of aerosols of mixtures of sodium and magnesium salts[J]. Atmos. Environ., 2000,34:4795-4803. doi: 10.1016/S1352-2310(00)00252-1

    3. [3]

      B. Zuberi, A.K. Bertram, T. Koop, L.T. Molina, M.J. Molina. Heterogeneous freezing of aqueous particles induced by crystallized (NH4)2SO4, Ice, and Letovicite[J]. J. Phys. Chem. A, 2001,105:6458-6464. doi: 10.1021/jp010094e

    4. [4]

      S.T. Martin. Phase transitions of aqueous atmospheric particles[J]. Chem. Rev., 2000,100:3403-3454. doi: 10.1021/cr990034t

    5. [5]

      B. Jing, S.R. Tong, Q.F. Liu. , Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate[J]. Atmos. Chem. Phys. Discuss., 2015,15:23357-23405. doi: 10.5194/acpd-15-23357-2015

    6. [6]

      M. Kajino, M. Aikawa. A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan[J]. Atmos. Environ., 2015,117:124-134. doi: 10.1016/j.atmosenv.2015.06.042

    7. [7]

      L. Sun, Y. Wang, T.X. Yue. , Evaluation of the behavior of clouds in a region of severe acid rain pollution in southern China: species, complexes, and variations[J]. Environ. Sci. Pollut. Res., 2015,22:14280-14290. doi: 10.1007/s11356-015-4674-5

    8. [8]

      P.D. Lu, T. He, Y.H. Zhang. Relative humidity anneal effect on hygroscopicity of aerosol particles studied by rapid-scan FTIR-ATR spectroscopy[J]. Geophys. Res. Lett., 2008,35L20812. doi: 10.1029/2008GL035302

    9. [9]

      Q.N. Zhang, Y. Zhang, C. Cai. , In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR[J]. J. Phys. Chem. A, 2014,118:2728-2737. doi: 10.1021/jp412073c

    10. [10]

      J.P. Darr, S.Q. Davis, Y. Kohno, K. McKenna, P. Morales. Morphological effects on the hygroscopic properties of sodium chloride-sodium sulfate aerosols[J]. J. Aerosol Sci., 2014,77:158-167. doi: 10.1016/j.jaerosci.2014.08.002

    11. [11]

      M. Gysel, E. Weingartner, U. Baltensperger. Hygroscopicity of aerosol particles at low temperatures., 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols[J]. Environ. Sci. Technol., 2002,36:63-68. doi: 10.1021/es010055g

    12. [12]

      C. Rodriguez-Navarro, E. Doehne, E. Sebastian. How does sodium sulfate crystallize? Implications for the decay and testing of building materials[J]. Cem. Concr. Res., 2000,30:1527-1534. doi: 10.1016/S0008-8846(00)00381-1

    13. [13]

      E.R. Gibson, P.K. Hudson, V.H. Grassian. Physicochemical properties of nitrate aerosols: implications for the atmosphere[J]. J. Phys. Chem. A, 2006,110:11785-11799. doi: 10.1021/jp063821k

    14. [14]

      M. Kanakidou, J.H. Seinfeld, S.N. Pandis. , Organic aerosol and global climate modelling: a review[J]. Atmos. Chem. Phys., 2005,5:1053-1123. doi: 10.5194/acp-5-1053-2005

    15. [15]

      A.J. Prenni, P.J. DeMott, S.M. Kreidenweis. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids[J]. Atmos. Environ., 2003,37:4243-4251. doi: 10.1016/S1352-2310(03)00559-4

    16. [16]

      C. Marcolli, B.P. Luo, T. Peter. Mixing of the organic aerosol fractions: liquids as the thermodynamically stable phases[J]. J. Phys. Chem. A, 2004,108:2216-2224. doi: 10.1021/jp036080l

    17. [17]

      J.Y. Yu, Y. Zhang, G. Zeng. , Suppression of NaNO3 crystal nucleation by glycerol: micro-raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets[J]. J. Phys. Chem. B, 2012,116:1642-1650. doi: 10.1021/jp210824e

    18. [18]

      Q. Zhou, S.F. Pang, Y. Wang, J.B. Ma, Y.H. Zhang. Confocal raman studies of the evolution of the physical state of mixed phthalic acid/ammonium sulfate aerosol droplets and the effect of substrates[J]. J. Phys. Chem. B, 2014,118:6198-6205. doi: 10.1021/jp5004598

    19. [19]

      T. Koop, H.P. Ng, L.T. Molina, M.J. Molina. A new optical technique to study aerosol phase transitions: the nucleation of ice from H2SO4 aerosols[J]. J. Phys. Chem. A, 1998,102:8924-8931. doi: 10.1021/jp9828078

    20. [20]

      V.G. Ciobanu, C. Marcolli, U.K. Krieger, A. Zuend, T. Peter. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation[J]. J. Phys. Chem. A, 2010,114:9486-9495. doi: 10.1021/jp103541w

    21. [21]

      J.L. Dong, H.S. Xiao, L.J. Zhao, Y.H. Zhang. Spatially resolved Raman investigation on phase separations of mixed Na2SO4/MgSO4 droplets[J]. J. Raman Spectrosc., 2009,40:338-343. doi: 10.1002/jrs.v40:3

    22. [22]

      H.J. Tong, J.P. Reid, J.L. Dong, Y.H. Zhang. Observation of the crystallization and supersaturation of mixed component NaNO3-Na2SO4 droplets by FTIR-ATR and Raman spectroscopy[J]. J. Phys. Chem. A, 2010,114:12237-12243. doi: 10.1021/jp1080548

    23. [23]

      Q. Qu, L. Li, W. Bai, C.W. Yan. Initial atmospheric corrosion of zinc in presence of Na2SO4 and (NH4)2SO4[J]. Trans. Nonferrous Met. Soc. China, 2006,16:887-891. doi: 10.1016/S1003-6326(06)60345-2

    24. [24]

      P.V. Jentzsch, B. Kampe, P. Rö sch, J. Poop. Raman spectroscopic study of crystallization from solutions containing MgSO4 and Na2SO4: Raman spectra of double salts[J]. J. Phys. Chem. A, 2011,115:5540-5546. doi: 10.1021/jp200142n

    25. [25]

      R.M. Garland, M.E. Wise, M.R. Beaver. , Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles[J]. Atmos. Chem. Phys., 2005,5:1951-1961. doi: 10.5194/acp-5-1951-2005

    26. [26]

      X.N. Feng, H.N. Chen, Y.M. Luan. , In-situ FTIR-ATR spectroscopic observation on the dynamic efflorescence/deliquescence processes of Na2SO4 and mixed Na2SO4/glycerol droplets[J]. Chem. Phys., 2014,430:78-83. doi: 10.1016/j.chemphys.2013.12.009

    27. [27]

      G. Vali. Freezing rate due to heterogeneous nucleation[J]. J. Atmos. Sci., 1994,51:1843-1856. doi: 10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2

  • 加载中
    1. [1]

      Guo ChuneGuo XiaomiChu WuboJiang NanLi He . FTIR-ATR study for adsorption of trypsin in aqueous environment on bare and TiO2 coated ZnSe surfaces. Chinese Chemical Letters, 2020, 31(1): 150-154. doi: 10.1016/j.cclet.2019.04.067

    2. [2]

      Chen RongqiaoGuo ChuneChu WuboJiang NanLi He . ATR-FTIR study of Bacillus sp. and Escherichia coli settlements on the bare and Al2O3 coated ZnSe internal reflection element. Chinese Chemical Letters, 2019, 30(1): 115-119. doi: 10.1016/j.cclet.2018.07.019

    3. [3]

      YANG QinLIU Mei-LingZHANG You-YuXIE Qing-JiYAO Shou-Zhuo . Bovine Serum Albumin Adsorption on Hydroxyapatite and TiO2 Investigated by Electrochemical Quartz Crystal Impedance and FTIR-ATR Spectroscopy. Chinese Journal of Applied Chemistry, 2007, 24(2): 128-133.

    4. [4]

      ZHANG Yu-QinZHANG You-YuYE MinTAN PingZHAO Meng-JiaoYAO Shou-Zhuo . Interaction of L-Cysteine-capped-ZnS Nanoparticles with Bovine Hemoglobin by using UV-Vis, Fluorenscence and FTIR Spectroscopy. Chinese Journal of Applied Chemistry, 2008, 25(9): 1011-1016.

    5. [5]

      TONG Hai-JieQIAN Zheng-GangREID Jonathan P.ZHANG Yun-Hong . High Temporal and Spatial Resolution Measurements of the Rapid Efflorescence of Sea Salt Droplets. Acta Physico-Chimica Sinica, 2011, 27(11): 2521-2527. doi: 10.3866/PKU.WHXB20111121

    6. [6]

      RUAN Hong-MeiDONG Ze-HuaSHI WeiCHEN Dong-Chu . Effect of Inhibitors on Pitting Corrosion of AA6063 Aluminium Alloy Based on Electrochemical Noise. Acta Physico-Chimica Sinica, 2012, 28(09): 2097-2107. doi: 10.3866/PKU.WHXB201206251

    7. [7]

      GE Dong-LaiFAN Ying-JuYIN LongSUN Zhong-Xi . Determination of the Adsorption of Xanthate on Mesoporous CuAl2O4 Using a Continuous Online In situ ATR-FTIR Technology. Acta Physico-Chimica Sinica, 2013, 29(02): 371-376. doi: 10.3866/PKU.WHXB201211146

    8. [8]

      Bohua DengNing YueHaoyang DongQiuyue GuiLiang XiaoJinping Liu . Surface-assembled highly flexible Na3(VOPO4)2F nanocube cathode for high-rate binder-free Na-ion batteries. Chinese Chemical Letters, 2021, 32(2): 826-829. doi: 10.1016/j.cclet.2020.04.054

    9. [9]

      Song JinGong Liuzhu . Rh/Zn Catalyzed Asymmetric [4+3] Cycloaddition Reaction. Chinese Journal of Organic Chemistry, 2020, 40(1): 245-246. doi: 10.6023/cjoc202000004

    10. [10]

      Lin TaoZhao QingyangZhang XumuDong Xiu-Qin . Facile access to chiral 4-substituted chromanes through Rh-catalyzed asymmetric hydrogenation. Chinese Chemical Letters, 2020, 31(7): 1859-1862. doi: 10.1016/j.cclet.2020.01.001

    11. [11]

      Liu Sheng-MingLin Zheng-YanYin Yuan-Qi . Vibrational Spectrum and Normal Coordinate Analysis on Rh(acac)(CO)2. Acta Physico-Chimica Sinica, 1992, 8(04): 530-535. doi: 10.3866/PKU.WHXB19920421

    12. [12]

      Li Xin-ShengXin QinZhang HuiLi JunZhou Jian-LueChen Yao-QiangChen Yu . Characterization of CO and/or NO Adsorbed on Reduced Rh-V/SiO2 Catalyst by Infraed Spectroscopy. Acta Physico-Chimica Sinica, 1994, 10(11): 1009-1014. doi: 10.3866/PKU.WHXB19941109

    13. [13]

      Qing Heng ZENG Xiang Ping HU Xin Miao LIANG Zhuo ZHENG . Synthesis of Novel C2-Symmetrical Bidentate Phosphoramidite Ligands for Rh-catalyzed Asymmetric Hydrogenation of β-(Acylamino)acrylates. Chinese Chemical Letters, 2006, 17(6): 711-713.

    14. [14]

      Zhen Feng Liu Xian Fang Yue Qiang Wei Ke Li Han . Rh(Ⅱ) carbene S-H insertion into H2S via the stepwise mechanism. Chinese Chemical Letters, 2007, 18(1): 107-110. doi: 10.1016/j.cclet.2006.11.012

    15. [15]

      Lin HUANG Wen Gui GUO An Ming LII Da Ming LI Yi De XU . DISPERSION EFFECTS OF CLUSTER-DERIVED Rh ON SiO2 OH ETHYLENE HYDROFORMYLATION. Chinese Chemical Letters, 1992, 3(5): 401-402.

    16. [16]

      Huan LiYuxuan HanZi YangZhenyu YaoLianhui WangXiuling Cui . Rh(Ⅲ)-catalyzed annulation of azobenzenes and α-Cl ketones toward 3-acyl-2H-indazoles. Chinese Chemical Letters, 2021, 32(5): 1709-1712. doi: 10.1016/j.cclet.2020.12.027

    17. [17]

      Wu Bing-FangSu Hai-QuanYan Xiu-YingHu XiangLiu Shu-TangLiu Qi-WangShi Jian-Qiu . Synthesis and Crystal Structure of Rh2(μ-SC6H5)2(CO)4. Acta Physico-Chimica Sinica, 1994, 10(09): 847-851. doi: 10.3866/PKU.WHXB19940915

    18. [18]

      Shui Hua TANG Bao Chun LIU Qi LIANG Li Zhen GAO Liang Fu ZHANG Zuo Long YU . NO Decomposition on Rh Supported CNTs. Chinese Chemical Letters, 2001, 12(1): 83-86.

    19. [19]

      Andrew O. Odeh . Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks. Journal of Fuel Chemistry and Technology, 2015, 43(2): 129-137.

    20. [20]

      Wang BoSukkaew PitsiriSong GuichenRosenkranz AndreasLu YunxiangNishimura KazhihitoWang JiaLyu JileiCao YangYi JianOjamäe LarsLi HeJiang Nan . Unprecedented differences in the diamond nucleation density between carbon- and silicon-faces of 4H-silicon carbides. Chinese Chemical Letters, 2020, 31(7): 2013-2018. doi: 10.1016/j.cclet.2019.11.026

Metrics
  • PDF Downloads(0)
  • Abstract views(230)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return