Citation: Reza Ojani, Parisa Hamidi, Jahan-Bakhsh Raoof. Efficient nonenzymatic hydrogen peroxide sensor in acidic media based on Prussian blue nanoparticles-modified poly (o-phenylenediamine)/glassy carbon electrode[J]. Chinese Chemical Letters, ;2016, 27(03): 481-486. doi: 10.1016/j.cclet.2015.12.030 shu

Efficient nonenzymatic hydrogen peroxide sensor in acidic media based on Prussian blue nanoparticles-modified poly (o-phenylenediamine)/glassy carbon electrode

  • Corresponding author: Reza Ojani, 
  • Received Date: 27 May 2015
    Available Online: 3 December 2015

  • The Prussian blue nanoparticles (PBNPs) were prepared by a self-assembly process, on a glassy carbon (GC) electrode modified with a poly(o-phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNPs-modified PoPD/GCE was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of modified electrodes. The PBNPs/PoPD/GCE showed adequate mechanical, electrochemical stability and good sensitivity in comparison with other PB based H2O2 sensors. The present modified electrode exhibited a linear response for H2O2 reduction over the concentration range of 1-58.22 μmol L-1 with a detection limit of ca. 0.8 μmol L-1 (S/N=3), and sensitivity of 3187.89 mA (mol L-1)-1 cm-2 using the amperometric method. This sensor was employed for the H2O2 determination in real sample and also exhibited good interference resistance and selectivity.
  • 加载中
    1. [1]

      [1] H. Notsu, T. Tatsuma, A. Fujishima, Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives, J. Electroanal. Chem. 523(2002) 86-92.

    2. [2]

      [2] N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, An alkaline direct borohydride fuel cellwith hydrogen peroxide as oxidant, J. Power Sources 143(2005) 1-8.

    3. [3]

      [3] S. Hasegawa, K. Shimotani, K. Kishi, H. Watanabe, Electricity generation from decomposition of hydrogen peroxide, Electrochem. Solid State Lett. 8(2005) A119-A121.

    4. [4]

      [4] M.D. Gouda, M.A. Kumar, M.S. Thacur, N.G. Karanth, Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents, Biosens. Bioelectron. 17(2002) 503-507.

    5. [5]

      [5] N.V. Klassen, D. Marchington, H.C.E. Mcgowan, H2O2 determination by the (Ⅰ)3-method and by KMnO4 titration, Anal. Chem. 66(1994) 2921-2925.

    6. [6]

      [6] A.M. Almuaibed, A. Townshend, Flow spectrophotometric method for determination of hydrogen peroxide using a cation exchanger for preconcentration, Anal. Chim. Acta 295(1994) 159-163.

    7. [7]

      [7] P.A. Tanner, A.Y.S. Wong, Spectrophotometric determination of hydrogen peroxide in rainwater, Anal. Chim. Acta 370(1998) 279-287.

    8. [8]

      [8] (Ⅰ). Mori, T. Takasaki, Y. Fujita, T. Matsuo, Selective and sensitive fluorometric determinations of cobalt(Ⅱ) and hydrogen peroxide with fluorescein-hydrazide, Talanta 47(1998) 631-637.

    9. [9]

      [9] R. Rapoport, (Ⅰ). Hanukoglu, D. Sklan, A Fluorometric Assay for hydrogen peroxide, suitable for NAD(P)H-dependent superoxide generating redox systems, Anal. Biochem. 218(1994) 309-313.

    10. [10]

      [10] A.N. Díaz, M.C.R. Peinado, M.C.T. Minguez, Sol-gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence, Anal. Chim. Acta 363(1998) 221-227.

    11. [11]

      [11] S. Effkemann, U. Pinkernell, U. Karst, Peroxide analysis in laundry detergents using liquid chromatography, Anal. Chim. Acta 363(1998) 97-103.

    12. [12]

      [12] U. Pinkernell, S. Effkemann, U. Karst, Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide, Anal. Chem. 69(1997) 3623-3627.

    13. [13]

      [13] T.A. (Ⅰ)vandini, R. Sato, Y. Makide, A. Fujishima, Y. Einaga, Pt-implanted borondoped diamond electrodes and the application for electrochemical detection of hydrogen peroxide, Diam. Relat. Mater. 14(2005) 2133-2138.

    14. [14]

      [14] P. Santhosh, K.M. Manesh, A. Gopalan, K.P. Lee, Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide, Anal. Chim. Acta 575(2006) 32-38.

    15. [15]

      [15] H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, The crystal structure of Prussian Blue:Fe4[Fe(CN)6]3·xH2O, (Ⅰ)norg. Chem. 16(1977) 2704-2710.

    16. [16]

      [16] P. Thornton, Chapter 3:the transition elements. Part Ⅲ. Groups VⅡA, VⅢA, and (Ⅰ)B, Annu. Rep. Prog. Chem. Sect. A:(Ⅰ)norg. Chem. 77(1980) 191-237.

    17. [17]

      [17] R.C. Millward, C.E. Madden, (Ⅰ). Sutherland, et al., Directed assembly of multilayers-the case of Prussian Blue, Chem. Commun. 19(2001) 1994-1995.

    18. [18]

      [18] K. Thenmozhi, S. Sriman Narayanan, Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane, Anal. Bioanal. Chem. 387(2007) 1075-1082.

    19. [19]

      [19] B.Q. Wang, B. Li, Z.X. Wang, et al., Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium, Anal. Chem. 71(1999) 1935-1939.

    20. [20]

      [20] S.M. Golabi, A. Nozad, Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly (o-phenylenediamine) film, J. Electroanal. Chem. 521(2002) 161-167.

    21. [21]

      [21] A.B. Kharitonov, L. Alfonta, E. Katz, (Ⅰ). Willner, Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry, J. Electroanal. Chem. 487(2000) 133-141.

    22. [22]

      [22] B.J. Feldman, R.W. Murray, Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes, (Ⅰ)norg. Chem. 26(1987) 1702-1708.

    23. [23]

      [23] J. Wang, Analytical Electrochemistry, VCH, New York, 1999.

    24. [24]

      [24] R.S. Nicholson, (Ⅰ). Shain, Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem. 36(1964) 706-723.

    25. [25]

      [25] F. Ricci, C. Goncalves, A. Amine, et al., Electroanalytical study of Prussian blue modified glassy carbon paste electrodes, Electroanalysis 15(2003) 1204-1211.

    26. [26]

      [26] Y. Liu, Z.Y. Chu, W.Q. Jin, A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode, Electrochem. Commun. 11(2009) 484-487.

    27. [27]

      [27] K.S. Tseng, L.C. Chen, K.C. Ho, Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode, Sens. Actuators B:Chem. 108(2005) 738-745.

    28. [28]

      [28] L. Qian, X.R. Yang, Assembly of Prussian blue onto SiO2 nanoparticles and carbon nanotubes by electrostatic interaction, Colloids Surf. A:Physicochem. Eng. Asp. 278(2006) 123-128.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    5. [5]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    6. [6]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    7. [7]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    8. [8]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    9. [9]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    10. [10]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    11. [11]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    12. [12]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    13. [13]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    16. [16]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    19. [19]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    20. [20]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

Metrics
  • PDF Downloads(0)
  • Abstract views(713)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return