Citation:
Dai Wu, Ying Gao, Wan-Guo Tian, Yun-Hui Li, Weiting Yang, Zhong-Ming Sun. Layered and three-dimensional uranyl-organic assemblies with 4,40-oxidiphthalic acid[J]. Chinese Chemical Letters,
;2016, 27(03): 325-329.
doi:
10.1016/j.cclet.2015.12.016
-
Hydrothermal reactions of uranyl nitrate and 4,40-oxidiphthalic acid (H4L) resulted in the formation of three new uranyl-organic framework materials, namely (NH4)2[(UO2)3(L)2]·5H2O (1), (NEt4)[(UO2)3 (H2O)(L)(HL)] (2) and (UO2)7(H2O)2(phen)4(L)2(HL)2 (3) (NEt4=tetraethylammonium, phen=1,10-phenanthroline). These three structures all comprise common uranyl pentagonal bipyramids. In 1, UO7 polyhedra are linked by hexadentate ligands to form a 3D framework with 1D channels, in which are located NH4+ ions and water molecules. While in 2, the organic ligands adopt pentadentate and hexadentate coordination modes, ligating UO7 units to create a layered structure with channels filled by NEt4+ ions. For 3, uranyl square bipyramids are also accommodated together with pentagonal bipyramids, which are linked by tetradentate carboxylate ligands to produce the layered assembly. Phen molecules also coordinate to the uranyl centers to build up the structure. Luminescent studies indicate that 2 and 3 exhibit the characteristic uranyl emission.
-
Keywords:
- Uranyl-organic assemblies,
- Carboxylates,
- Structures,
- Luminescence
-
-
-
[1]
[1] T.R. Cook, Y.R. Zheng, P.J. Stang, Metal-organic frameworks and self-assembled supramolecular coordination complexes:comparing and contrasting the design, synthesis, and functionality of metal-organic materials, Chem. Rev. 113(2013) 734-777.
-
[2]
[2] J. Park, D.W. Feng, H.C. Zhou, Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores, J. Am. Chem. Soc. 137(2015) 1663-1672.
-
[3]
[3] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25(2014) 1407-1410.
-
[4]
[4] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2[M(Ⅱ)=Co, Ni]:mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25(2014) 835-838.
-
[5]
[5] Y.X. Sun, W.Y. Sun, (Ⅰ)nfluence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.
-
[6]
[6] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44(2011) 531-540.
-
[7]
[7] T. Loiseau, (Ⅰ). Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267(2014) 69-109.
-
[8]
[8] K.E. Knope, C.L. Cahill, Uranyl phosphonates:a structural survey, in:A. Clearfield, K. Demadis (Eds.), Metal Phosphonate Chemistry:From Synthesis to Applications, The Royal Society of Chemistry, London, 2012, pp. 586-606.
-
[9]
[9] Z.H. Weng, Z.H. Zhang, T. Olds, M. Sterniczuk, P.C. Burns, Copper((Ⅰ)) and copper(Ⅱ) uranyl heterometallic hybrid materials, (Ⅰ)norg. Chem. 53(2014) 7993-7998.
-
[10]
[10] P.O. Adelani, N.D. Cook, P.C. Burns, Use of 2,2-bipyrimidine for the preparation of UO22+-3d diphosphonates, Cryst. Growth Des. 14(2014) 5692-5699.
-
[11]
[11] P. Thuéry, J. Harrowfield, Uranyl-organic frameworks with polycarboxylates:unusual effects of a coordinating solvent, Cryst. Growth Des. 14(2014) 1314-1323.
-
[12]
[12] P. Thuery, J. Harrowfield, Chiral one-to three-dimensional uranyl-organic assemblies from (1R,3S)-(+)-camphoric acid, CrystEngComm 16(2014) 2996-3004.
-
[13]
[13] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, (Ⅰ)onothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14(2014) 228-235.
-
[14]
[14] W.T. Yang, T.G. Parker, Z.M. Sun, Structural chemistry of uranium phosphonates, Coord. Chem. Rev. 303(2015) 86-109.
-
[15]
[15] W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, Z.M. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14(2014) 1366-1374.
-
[16]
[16] A.T. Kerr, S.A. Kumalah, K.T. Holman, R.J. Butcher, C.L. Cahill, Uranyl coordination polymers incorporating η5-cyclopentadienyliron-functionalized η6-phthalate metalloligands:Syntheses, structures and photophysical properties, J. (Ⅰ)norg. Organomet. Polym. 24(2014) 128-136.
-
[17]
[17] W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, (Ⅰ)norg. Chem. 52(2013) 12394-12402.
-
[18]
[18] H.Y. Wu, R.X. Wang, W.T. Yang, et al., 3-Fold-interpenetrated uranium-organic frameworks:new strategy for rationally constructing three-dimensional uranyl organic materials, (Ⅰ)norg. Chem. 51(2012) 3103-3107.
-
[19]
[19] W.T. Yang, W.G. Tian, X.X. Liu, L. Wang, Z.M. Sun, Syntheses, structures, luminescence, and photocatalytic properties of a series of uranyl coordination polymers, Cryst. Growth Des. 14(2014) 5904-5911.
-
[20]
[20] Siemens Analytical X-ray (Ⅰ)nstruments, (Ⅰ)nc., SMART and SA(Ⅰ)NT (software packages), Siemens Analytical X-ray (Ⅰ)nstruments, (Ⅰ)nc., Madison, W(Ⅰ), 1996.
-
[21]
[21] Siemens (Ⅰ)ndustrial Automation, (Ⅰ)nc., SHELXTL Program, version 5.1, Siemens (Ⅰ)ndustrial Automation, (Ⅰ)nc., Madison, W(Ⅰ), 1997.
-
[22]
[22] P.C. Burns, R.C. Ewing, F.C. Hawthorne, The crystal chemistry of hexavalent uranium:polyhedron geometries, bond-valence parameters, and polymerization of polyhedra, Can. Min. 35(1997) 1551-1570.
-
[23]
[23] N.E. Brese, M. O'Keeffe, Bond-valence parameters for solids, Acta Cryst. B 47(1991) 192-197.
-
[24]
[24] A. Mer, S. Obbade, M. Rivenet, C. Renard, F. Abraham,[La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185(2012) 180-186.
-
[25]
[25] G. Meinrath, Uranium(V(Ⅰ)) speciation by spectroscopy, J. Radioanal. Nucl. Chem. 224(1997) 119-126.
-
[26]
[26] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11(2011) 4227-4237.
-
[1]
-
-
-
[1]
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
-
[2]
Hao Jiang , Yuan-Yuan He , Hai-Chao Liang , Meng-Jia Shang , Han-Han Lu , Chun-Hua Liu , Yin-Shan Meng , Tao Liu , Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354
-
[3]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[4]
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
-
[5]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[6]
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
-
[7]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[8]
Yingjie Wang , Peng Tang , Wenchao Tu , Qi Gao , Cuizhu Wang , Luying Tan , Lixin Zhao , Hongye Han , Liefeng Ma , Kouharu Otsuki , Weilie Xiao , Wenli Wang , Jinping Liu , Yong Li , Zhajun Zhan , Wei Li , Xianli Zhou , Ning Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955
-
[9]
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
-
[10]
Wen-Jun Xia , Yong-Jiang Wang , Yun-Fei Cao , Cai Sun , Xin-Xiong Li , Yan-Qiong Sun , Shou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248
-
[11]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[12]
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
-
[13]
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
-
[14]
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
-
[15]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[16]
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
-
[17]
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
-
[18]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[19]
Jiawei Li , Cheng Chen , Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513
-
[20]
Yueyue WEI , Xuehua SUN , Hongmei CHAI , Wanqiao BAI , Yixia REN , Loujun GAO , Gangqiang ZHANG , Jun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(630)
- HTML views(25)