Citation: Viran P. Mahida, Manish P. Patel. Superabsorbent amphoteric nanohydrogels:Synthesis, characterization and dyes adsorption studies[J]. Chinese Chemical Letters, ;2016, 27(03): 471-474. doi: 10.1016/j.cclet.2015.12.015 shu

Superabsorbent amphoteric nanohydrogels:Synthesis, characterization and dyes adsorption studies

  • Corresponding author: Manish P. Patel, 
  • Received Date: 13 May 2015
    Available Online: 21 September 2015

    Fund Project: This work was provided by University Grants Commission, New Delhi (No.F.39-685/2010(SR)) (No.F.39-685/2010(SR)

  • The goal of the present research is to remove high percentage of cationic and anionic dyes such as, Neutral Red, Safranin O and Indigo Carmine from aqueous solutions by poly(NIPAAm/N,N-diallylpyrrolidinium bromide/AA) superabsorbent amphoteric nanohydrogels synthesized using the inverse microemulsion polymerization method. Effect of various parameters such as, treatment time, initial dye concentration, pH and adsorbent dose were investigated. Furthermore, kinetics and isotherms adsorption models were applied to determine the maximum adsorption and mechanism for adsorption, which shows that adsorption obeyed the pseudo-second order kinetics. Fromthe results, removal of dyes within the nanohydrogel was found to be in the order:AB-74< BR-2 ≤BR-5.
  • 加载中
    1. [1]

      [1] L.L. Fan, Y. Zhang, X.J. Li, et al., Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules, Colloids Surf., B:Biointerfaces 91(2012) 250-257.

    2. [2]

      [2] (Ⅰ). Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage. 113(2012) 170-183.

    3. [3]

      [3] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. (Ⅰ)dris, Cationic and anionic dye adsorption by agricultural solid wastes:a comprehensive review, Desalination 280(2011) 1-13.

    4. [4]

      [4] Y.J. Tang, X. Wang, L.H. Zhu, et al., Removal of methyl orange from aqueous solutions with poly(acrylic acid-co-acrylamide) superabsorbent resin, Polym. Bull. 70(2013) 905-918.

    5. [5]

      [5] H. Yao, X.M. You, Q. Lin, et al., Multi-stimuli responsive metal-organic gel of benzimidazol-based ligands with lead nitrate and their use in removal of dyes from waste-water, Chin. Chem. Lett. 24(2013) 703-706.

    6. [6]

      [6] S. Gokturk, S. Kaluc, Removal of selected organic compounds in aqueous solutions by activated carbon, J. Environ. Sci. Technol. 1(2008) 111-123.

    7. [7]

      [7] J. Zhang, Q.Q. Shi, C.L. Zhang, et al., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis, Bioresour. Technol. 99(2008) 8974-8980.

    8. [8]

      [8] E. Karadağ, O.B. Üzüm, A study on water and dye sorption capacities of novel ternary acrylamide/sodium acrylate/PEG semi (Ⅰ)PN hydrogels, Polym. Bull. 68(2012) 1357-1368.

    9. [9]

      [9] E. Karadağ, B. Hasgül, S. Kundakci, O.B. Uzum, et al., Montmorillonite loaded highly swollen AAm/AMPS hydrogels and semi-(Ⅰ)PNs with PEG as a novel composite polymeric sorbent for water and dye sorption, Polym.Plast. Technol. Eng. 53(2014) 1259-1271.

    10. [10]

      [10] J.J. Wang, F. Liu, Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation, Polym. Bull. 70(2013) 1415-1430.

    11. [11]

      [11] Y.N. Patel, M.P. Patel, A new fast swelling poly[DAPB-co-DMAAm-co-AASS] superabsorbent hydrogel for removal of anionic dyes from water, Chin. Chem. Lett. 24(2013) 1005-1007.

    12. [12]

      [12] F.M.Pavel,Microemulsionpolymerization, J. DispersionSci.Technol.25(2004)1-16.

    13. [13]

      [13] N. Sahiner, Hydrogel nanonetworks with functional core-shell structure, Eur. Polym. J. 43(2007) 1709-1717.

    14. [14]

      [14] P.V. Dadhaniya, M.P. Patel, R.G. Patel, Removal of anionic dyes from aqueous solution using poly[N-vinyl pyrrolidone/2-(methacryloyloxyethyl) trimethyl ammonium chloride] superswelling hydrogels, Polym. Bull. 58(2007) 359-369.

    15. [15]

      [15] M. Kaplan, H. Kasgoz, Hydrogel nanocomposite sorbents for removal of basic dyes, Polym. Bull. 67(2011) 1153-1168.

    16. [16]

      [16] P.V. Dadhaniya, M.P. Patel, R.G. Patel, Swelling and dye adsorption study of novel superswelling[Acrylamide/N-vinylpyrrolidone/3(2-hydroxyethyl carbamoyl) acrylic acid] hydrogels, Polym. Bull. 57(2006) 21-31.

    17. [17]

      [17] V.P. Mahida, M.P. Patel, Synthesis of new superabsorbent poly(N(Ⅰ)PAAm/AA/Nallylisatin) nanohydrogel for effective removal of As(V) and Cd(Ⅱ) toxic metal ions, Chin. Chem. Lett. 25(2014) 601-604.

    18. [18]

      [18] H. Wang, X.Z. Yuan, Z.B. Wu, et al., Removal of basic dye from aqueous solution using Cinnamomum camphora sawdust:kinetics, isotherms, thermodynamics, and mass-transfer processes, Sep. Sci. Technol. 49(2014) 2689-2699.

    19. [19]

      [19] S.S. Li, X.Z. Kong, X.B. Jiang, X.L. Zhu, A novel and simple pathway to synthesis of porous polyurea absorbent and its tests on dye adsorption and desorption, Chin. Chem. Lett. 24(2013) 287-290.

  • 加载中
    1. [1]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    2. [2]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    3. [3]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    4. [4]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    5. [5]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    8. [8]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    9. [9]

      Ping WangChunmao ChenHongwei RenErhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725

    10. [10]

      Yaohua WuYihong ChenJuanshan DuHuazhe WangChuchu ChenWenrui JiaYongqi LiangQinglian WuWan-Qian Guo . Ice-assisted synthesis of functional materials: Strategies and environmental applications. Chinese Chemical Letters, 2025, 36(12): 110944-. doi: 10.1016/j.cclet.2025.110944

    11. [11]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    12. [12]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    13. [13]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    14. [14]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    18. [18]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    19. [19]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(0)
  • Abstract views(1153)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return