Citation:
Jing Wen, Yun-Lei Luo, Hui-Zhen Zhang, Huan-Huan Zhao, Cheng-He Zhou, Gui-Xin Cai. A green and convenient approach toward benzimidazole derivatives and their antimicrobial activity[J]. Chinese Chemical Letters,
;2016, 27(03): 391-394.
doi:
10.1016/j.cclet.2015.12.014
-
N-Alkylated benzimidazole derivatives have been synthesized via the aza-Michael addition reactions of 1H-benzimidazoles to α,β-unsaturated compounds in water and palladium acetate obviously promoted these transformations. The reported method, overcoming the inactivation of palladium under the equivalent nitrogenous conditions, has the advantages of convenient manipulation, atom-economy, as well as environmental friendliness. The bioactive results showed that butyl 3-(5,6-dimethyl-1H-benzo[d]imidazol-1-yl)propanoate (3c) exhibited excellent inhibitory activity against Bacillus subtilis (MIC=16 μg/mL) and Bacillus proteus (MIC=8 μg/mL). Therefore, this process would facilitate the construction of various potential bioactive compounds based on the benzimidazole scaffold under mild conditions.
-
Keywords:
- Benzimidazoles,
- Aza-Michael addition,
- In water,
- Antimicrobial activity
-
-
-
[1]
[1] (a) X.M. Peng, G.X. Cai, C.H. Zhou, Recent developments in azole compounds as antibacterial and antifungal agents, Curr. Top. Med. Chem. 13(2013) 1963-2010;
-
[2]
(b) Y. Bansal, O. Silakari, The therapeutic journey of benzimidazoles:a review, Bioorg. Med. Chem. 20(2012) 6208-6236.
-
[3]
[2] (a) V. Vajpayee, S.M. Lee, J.W. Park, et al., Growth inhibitory activity of a bisbenzimidazole-bridged arene ruthenium metalla-rectangle and-prism, Organometallics 32(2013) 1563-1566;
-
[4]
(b) J.Y. Hu, R. Liu, X.L. Zhu, X. Cai, H.J. Zhu, et al., A highly efficient and selective probe for F- detection based on 1H-imidazo[4,5-b]phenazine derivative, Chin. Chem. Lett. 26(2015) 339-342.
-
[5]
[3] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chem. Soc. Rev. 39(2010) 3210-3239.
-
[6]
[4] (a) Y.J. Eun, M.Q. Zhou, D. Kiekebusch, et al., Divin:a small molecule inhibitor of bacterial divisome assembly, J. Am. Chem. Soc. 135(2013) 9768-9776;
-
[7]
(b) M.Q. Zhou, Y.J. Eun, (Ⅰ).A. Guzei, D.B. Weibel, Structure-activity studies of divin:an inhibitor of bacterial cell division, ACS Med. Chem. Lett. 4(2013) 880-885.
-
[8]
[5] (a) J.B. Wright, The chemistry of the benzimidazoles, Chem. Rev. 48(1951) 397-541;
-
[9]
(b) P.N. Preston, Synthesis, reactions, and spectroscopic properties of benzimidazoles, Chem. Rev. 74(1974) 279-314;
-
[10]
(c) V.A. Mamedov, A.M. Murtazina, Recyclization reactions leading to benzimidazoles, Russ. Chem. Rev. 80(2011) 397-420;
-
[11]
(d) S.S. Panda, R. Malik, S.C. Jain, Synthetic approaches to 2-arylbenzimidazoles:a review, Curr. Org. Chem. 16(2012) 1905-1919;
-
[12]
(e) R.S. Begunov, G.A. Ryzvanovich, Synthesis of pyrido[1,2-a]benzimidazoles and other fused imidazole derivatives with a bridgehead nitrogen atom, Russ. Chem. Rev. 82(2013) 77-97;
-
[13]
(f) N. Zheng, K.W. Anderson, X.H. Huang, H.N. Nguyen, S.L. Buchwald, A palladium-catalyzed regiospecific synthesis of N-aryl benzimidazoles, Angew. Chem. (Ⅰ)nt. Ed. 46(2007) 7509-7512;
-
[14]
(g) B.L. Zou, Q.L. Yuan, D.W. Ma, Synthesis of 1,2-disubstituted benzimidazoles by a Cu-catalyzed cascade aryl amination/condensation process, Angew. Chem. (Ⅰ)nt. Ed. 46(2007) 2598-2601;
-
[15]
(h) L.M. Stanley, J.F. Hartwig, Regio-and enantioselective N-allylations of imidazole, benzimidazole, and purine heterocycles catalyzed by single-component metallacyclic (Ⅰ)ridium complexes, J. Am. Chem. Soc. 131(2009) 8971-8983;
-
[16]
(i) Q. Sun, C.J. Wang, S.S. Gong, Y.J. Ai, H.B. Sun, Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions, Chin. Chem. Lett. 26(2015) 297-300.
-
[17]
[6] (a) L.W. Xu, C.G. Xia, A catalytic enantioselective aza-michael reaction:novel protocols for asymmetric synthesis of β-amino carbonyl compounds, Eur. J. Org. Chem.2005(2005) 633-639;
-
[18]
(b) P.R. Krishna, A. Sreeshailam, R. Srinivas, Recent advances and applications in asymmetric aza-Michael addition chemistry, Tetrahedron 65(2009) 9657-9672;
-
[19]
(c) D. Enders, C. Wang, J.X. Liebich, Organocatalytic asymmetric aza-Michael additions, Chem. Eur. J. 15(2009) 11058-11076;
-
[20]
(d) A.Y. Rulev, Aza-Michael reaction:achievements and prospects, Russ. Chem. Rev. 80(2011) 197-218;
-
[21]
(e) Z. Amara, J. Caron, D. Joseph, Recent contributions from the asymmetric aza-Michael reaction to alkaloids total synthesis, Nat. Prod. Rep. 30(2013) 1211-1225;
-
[22]
(f) A. Lauber, B. Zelenay, J. Cvengroš, Asymmetric synthesis of N-stereogenic molecules:diastereoselective double aza-Michael reaction, Chem. Commun. 50(2014) 1195-1197.
-
[23]
[7] J. Wang, P.F. Li, S.H. Chan, A.S.C. Chan, F.Y. Kwong, Catalyst-free aza-Michael addition of azole to β,γ-unsaturated-α-keto ester:an efficient access to C-N bond formation, Tetrahedron Lett. 53(2012) 2887-2889.
-
[24]
[8] B.K. Liu, Q. Wu, X.Q. Qian, D.S. Lv, X.F. Lin, N-methylimidazole as a promising catalyst for the aza-Michael addition reaction of N-heterocycles, Synthesis 17(2007) 2653-2659.
-
[25]
[9] (a) W.B. Wheatley, G.F. Stiner, 1-(β-Aminoalkyl)benzimidazoles, J. Org. Chem. 22(1957) 923-925;
-
[26]
(b) A. Horváth, Catalysis and regioselectivity in the Michael addition of azoles. kinetic vs. thermodynamic control, Tetrahedron Lett. 37(1996) 4423-4426;
-
[27]
(c) P. Zaderenko, M.C. Ló pez, P. Ballesteros, Addition of azoles and amines to unsymmetrical fumaric esters, J. Org. Chem. 61(1996) 6825-6828;
-
[28]
(d) M.J. Bhanushali, N.S. Nandurkar, S.R. Jagtap, B.M. Bhanage, Y(NO3)3·6H2O catalyzed aza-Michael addition of aromatic/hetero-aromatic amines under solvent-free conditions, Catal. Commun. 9(2008) 1189-1195;
-
[29]
(e) M.L. Kantam, M. Roy, S. Roy, B. Sreedhar, R.L. De, Polyaniline supported Cu(Ⅰ):an efficient catalyst for C-N bond formation by N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids, and aza-Michael reactions of amines with activated alkenes, Catal. Commun. 9(2008) 2226-2230;
-
[30]
(f) M.N.S. Rad, A. Khalafi-Nezhad,M. Divar, S. Behrouz, Silica sulfuric acid (SSA) as a highly efficient heterogeneous catalyst for persilylation of purine and pyrimidine nucleobases and other N-heterocycles using hmds, Phosphorus Sulfur Silicon Relat. Elem. 185(2010) 1943-1954;
-
[31]
(g) F. Medina, C. Michon, F. Agbossou-Niedercorn, (Ⅰ)ntermolecular mono-and dihydroamination of activated alkenes using a recoverable gold catalyst, Eur. J. Org. Chem. 31(2012) 6218-6227;
-
[32]
(h) G. Zbancioc, (Ⅰ).(Ⅰ). Mangalagiu, C. Moldoveanu, Ultrasound assisted synthesis of imidazolium salts:an efficient way to ionic liquids, Ultrason. Sonochem. 23(2015) 376-384.
-
[33]
[10] (a) R. Breslow, Hydrophobic effects on simple organic reactions in water, Acc. Chem. Res. 24(1991) 159-164;
-
[34]
(b) C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations:a decade update, Chem. Rev. 105(2005) 3095-3166;
-
[35]
(c) R.N. Butler, A.G. Coyne, Water:nature's reaction enforcer-comparative effects for organic synthesis "in-water" and "on-water, Chem. Rev. 110(2010) 6302-6337.
-
[36]
[11] L. Chen, C.J. Li, The first palladium-catalyzed 1,4-addition of terminal alkynes to conjugated enones, Chem. Commun. (2004) 2362-2364.
-
[37]
[12] (a) C.Y. Wang, Z.F. Xi, Co-operative effect of Lewis acids with transition metals for organic synthesis, Chem. Soc. Rev. 36(2007) 1395-1406;
-
[38]
(b) H. Li, G.X. Cai, Z.J. Shi, LiCl-promoted Pd(Ⅱ)-catalyzed ortho carbonylation of N,N-dimethylbenzylamines, Dalton Trans. 39(2010) 10442-10446.
-
[39]
[13] H.Z. Zhang, G.L.V. Damu, G.X. Cai, C.H. Zhou, Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole, Eur. J. Med. Chem. 64(2013) 329-344.
-
[40]
[14] H.Z. Zhang, S.F. Cui, S. Nagarajan, et al., A unique one-pot reaction via C-C cleavage from aminomethylene benzimidazoles to access benzimidazolones with wide potentiality, Tetrahedron Lett. 55(2014) 4105-4109.
-
[1]
-
-
-
[1]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[2]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[3]
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
-
[4]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[5]
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
-
[6]
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
-
[7]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[8]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[9]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[10]
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
-
[11]
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
-
[12]
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
-
[13]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[14]
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
-
[15]
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
-
[16]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[17]
Xiaoyu Zhang , Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439
-
[18]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[19]
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
-
[20]
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(719)
- HTML views(30)