Citation: Lun Song, Li-Min Ma, Qian Sun, Wei-Bing Zhang, Min-Bo Lan, Jun-Hong Qian. Discrimination of biothiols in different media with NBD-F as the probe[J]. Chinese Chemical Letters, ;2016, 27(03): 330-334. doi: 10.1016/j.cclet.2015.12.012 shu

Discrimination of biothiols in different media with NBD-F as the probe

  • Corresponding author: Min-Bo Lan,  Jun-Hong Qian, 
  • Received Date: 17 July 2015
    Available Online: 13 September 2015

    Fund Project: This work was financially supported by Shanghai Municipal Natural Science Foundation(No.15ZR1409000) andtheopen fundof Shanghai Key Laboratory of Chemical Biology (No.SKLCB-2013-03). (No.15ZR1409000)

  • 4-Fluoro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-F) was employed as a colorimetric probe for differential detection of biothiols in different media. The spectral response and the selectivity of NBD-F toward thiols were significantly improved by surfactant micelles. Mercapto group exhibited high reactivity in all the solvents (including Tris-HCl buffer solution, CTAB and SDSmicelles). The 4-thioether derivatives of NBDF reacting with Cys and Hcy but not GSH could transfer to the corresponding 4-amino-substituents via intramolecular nucleophilic aromatic substitution, thus, GSH could be discriminated from Cys/Hcy. In CTAB micelles, the reaction product of NBD-F with Cys is non-fluorescent and it absorbs in longwavelength region. According to the spectral responses of NBD-F toward different low-molecularweight thiols, we could identify Cys, Hcy and GSH from each other.
  • 加载中
    1. [1]

      [1] (a) S. Zhang, C.N. Ong, H.M. Shen, Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells, Cancer Lett. 208(2004) 143-153;

    2. [2]

      (b) D.M. Townsend, K.D. Tew, H. Tapiero, Sulfur containing amino acids and human disease, Biomed. Pharmacother. 58(2004) 47-55;

    3. [3]

      (c) H. Tapiero, D.M. Townsend, K.D. Tew, The antioxidant role of selenium and seleno-compounds, Biomed. Pharmacother. 57(2003) 134-144;

    4. [4]

      (d) Z.A. Wood, E. Schröder, J.R. Harris, L.B. Poole, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci. 28(2003) 32-40.

    5. [5]

      [2] (a) C. Hwang, A.J. Sinskey, H.F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science 257(1992) 1496-1502;

    6. [6]

      (b) A. Meister, Glutathione metabolism and its selective modification, J. Biol. Chem. 263(1988) 17205-17208;

    7. [7]

      (c) T.P. Dalton, H.G. Shertzer, A. Puga, Regulation of gene expression by reactive oxygen, Annu. Rev. Pharmacol. Toxicol. 39(1999) 67-101;

    8. [8]

      (d) L.A. Herzenberg, S.C. De Rosa, J.G. Dubs, et al., Glutathione deficiency is associated with impaired survival in H(Ⅰ)V disease, Proc. Natl. Acad. Sci. U.S.A. 94(1997) 1967-1972;

    9. [9]

      (e) C. Perricone, C. De Carolis, R. Perricone, Glutathione:a key player in autoimmunity, Autoimmun. Rev. 8(2009) 697-701.

    10. [10]

      [3] (a) L. El-Khairy, P.M. Ueland, H. Refsum, (Ⅰ).M. Graham, S.E. Vollset, Plasma total cysteine as a risk factor for vascular disease:the European concerted action project, Circulation 103(2001) 2544-2549;

    11. [11]

      (b) S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem. 73(2001) 5972-5978;

    12. [12]

      (c) S. Seshadri, A. Beiser, J. Selhub, et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease, N. Engl. J. Med. 346(2002) 476-483;

    13. [13]

      (d) H. Refsum, A.D. Smith, P.M. Ueland, et al., Facts and recommendations about total homocysteine determinations:an expert opinion, Clin. Chem. 50(2004) 3-32.

    14. [14]

      [4] (a) X. Chen, Y. Zhou, X. Peng, J. Yoon, Fluorescent and colorimetric probes for detection of thiols, Chem. Soc. Rev. 39(2010) 2120-2135;

    15. [15]

      (b) H.S. Jung, X. Chen, J.S. Kim, J. Yoon, Recent progress in luminescent and colorimetric chemosensors for detection of thiols, Chem. Soc. Rev. 42(2013) 6019-6031.

    16. [16]

      [5] (a) Y. Liu, X. Lv, J. Liu, et al., Construction of a selective fluorescent probe for GSH based on a chloro-functionalized coumarin-enone dye platform, Chem. Eur. J. 21(2015) 4747-4754;

    17. [17]

      (b) X.D. Zeng, X.L. Zhang, B.C. Zhu, et al., A highly selective wavelength-ratiometric and colorimetric probe for cysteine, Dyes Pigm. 94(2012) 10-15;

    18. [18]

      (c) B.X. Zhang, C.P. Ge, J. Yao, et al., Selective selenol fluorescent probes:design, synthesis, structural determinants, and biological applications, J. Am. Chem. Soc. 137(2015) 757-769;

    19. [19]

      (d) L. Yang, W.S. Qu, X. Zhang, et al., Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives, Analyst 140(2015) 182-189;

    20. [20]

      (e) L. Song, T. Jia, W.J. Lu, et al., Multi-channel colorimetric and fluorescent probes for differentiating between cysteine and glutathione/homocysteine, Org. Biomol. Chem. 12(2014) 8422-8427;

    21. [21]

      (f) Y.H. Li, J.F. Yang, C.H. Liu, et al., Colorimetric and fluorescent detection of biological thiols in aqueous solution, Chin. Chem. Lett. 24(2013) 96-98.

    22. [22]

      [6] (a) M. (Ⅰ)şık, R. Guliyev, S. Kolemen, et al., Designing an intracellular fluorescent probe for glutathione:two modulation sites for selective signal transduction, Org. Lett. 16(2014) 3260-3263;

    23. [23]

      (b) D. Lee, G. Kim, J. Yin, J. Yoon, An aryl-thioether substituted nitrobenzothiadiazole probe for the selective detection of cysteine and homocysteine, Chem. Commun. 51(2015) 6518-6520;

    24. [24]

      (c) L. Wang, H.Y. Chen, H.L. Wang, et al., A fluorescent probe with high selectivity to glutathione over cysteine and homocysteine based on positive effect of carboxyl on nucleophilic substitution in CTAB, Sens. Actuators, B:Chem. 192(2014) 708-713;

    25. [25]

      (d) J. Liu, Y.Q. Sun, Y.Y. Huo, et al., Simultaneous fluorescence sensing of Cys and GSH from different emission channels, J. Am. Chem. Soc. 136(2014) 574-577.

    26. [26]

      [7] (a) L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BOD(Ⅰ)PY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, J. Am. Chem. Soc. 134(2012) 18928-18931;

    27. [27]

      (b) L.Y. Niu, H.R. Zheng, Y.Z. Chen, et al., Fluorescent sensors for selective detection of thiols:expanding the intramolecular displacement based mechanism to new chromophores, Analyst 139(2014) 1389-1395;

    28. [28]

      (c) L.A. Montoya, M.D. Pluth, Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents, Anal. Chem. 86(2014) 6032-6039;

    29. [29]

      (d) Y.H. Chen, J.C. Tsai, T.H. Cheng, et al., Sensitivity evaluation of NBD-SCN towards cysteine/homocysteine and its bioimaging applications, Biosens. Bioelectron. 56(2014) 117-123.

    30. [30]

      [8] (a) Y. Watanabe, K. (Ⅰ)mai, Pre-column labelling for high-performance liquid chromatography of amino acids with 7-fluoro-4-nitrobenzo-2-oxa-13-diazole and its application to protein hydrolysates, J. Chromatogr., A 239(1982) 723-732;

    31. [31]

      (b) T. (Ⅰ)shikawa, H. (Ⅰ)mai, K.Y. Maki, Development of an LC-MS/MS method for the analysis of free sphingoid bases using 4-fluoro-7-nitrobenzofurazan (NBD-F), Lipids 49(2014) 295-304;

    32. [32]

      (c) X.M. Wu, R. Wang, Q.Q. Jiang, et al., Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative, Biomed. Chromatogr. 28(2014) 459-462;

    33. [33]

      (d) Y. Song, T. Funatsu, M. Tsunoda, Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-21,3-benzoxadiazole (NBD-F), J. Chromatogr. B:Analyt. Technol. Biomed. Life Sci. 879(2011) 335-340.

    34. [34]

      [9] D.J. Birkett, N.C. Price, G.K. Radda, A.G. Salmon, The reactivity of SH groups with a fluorogenic reagent, FEBS Lett. 6(1970) 346-348.

    35. [35]

      [10] (a) S. Uchiyama, K. (Ⅰ)wai, A.P. de Silva, Multiplexing sensory molecules map protons near micellar membranes, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 4667-4669;

    36. [36]

      (b) J.H. Qian, S.H. Qian, R. Guo, The effects of anionic and cationic surfactants on the hydrolysis of sodium barbital, J. Surfactants Deterg. 8(2005) 253-256;

    37. [37]

      (c) Y.X. Guo, X.F. Yang, L.H. Hakuna, et al., A fast response highly selective probe for the detection of glutathione in human blood plasma, Sensors 12(2012) 5940-5950;

    38. [38]

      (d) H.Y. Tian, J.H. Qian, H.Y. Bai, et al., Micelle-induced multiple performance improvement of fluorescent probes for H2S detection, Anal. Chim. Acta 768(2013) 136-142;

    39. [39]

      (e) L. Song, H.Y. Tian, X.L. Pei, et al., Colorimetric and fluorescent detection of GSH with the assistance of CTAB micelles, RSC Adv. 5(2015) 59056-59061.

    40. [40]

      [11] L.M. Ma, J.H. Qian, H.Y. Tian, et al., A colorimetric and fluorescent dual probe for specific detection of cysteine based on intramolecular nucleophilic aromatic substitution, Analyst 137(2012) 5046-5050.

    41. [41]

      [12] (a) Y.Y. Chen, L.P. Si, J.J. Liu, et al., Study on π-π stacking interaction of aryl and alkyl meso-substituted corroles and theirs copper complexes, Comput. Appl. Chem. 26(2009) 1587-1592;

    42. [42]

      (b) B.N. Li, Y.K. Wang, D.M. Du, J.X. Xu, Notable and obvious ketene substituentdependent effect of temperature on the stereoselectivity in the Staudinger reaction, J. Org. Chem. 72(2007) 990-997.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    4. [4]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    5. [5]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    6. [6]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    7. [7]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    8. [8]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    9. [9]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    10. [10]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    11. [11]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    12. [12]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    13. [13]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    14. [14]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    15. [15]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    16. [16]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    17. [17]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    18. [18]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    19. [19]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    20. [20]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return