Citation: Wei Su, Rong Li, Yan-Jun Xing. Preparation and characterization of hollow carambola-shaped silver sulfide microspheres using a microwave-assisted template-free method[J]. Chinese Chemical Letters, ;2016, 27(03): 451-453. doi: 10.1016/j.cclet.2015.12.009 shu

Preparation and characterization of hollow carambola-shaped silver sulfide microspheres using a microwave-assisted template-free method

  • Corresponding author: Yan-Jun Xing, 
  • Received Date: 11 September 2015
    Available Online: 5 November 2015

    Fund Project: This work was supported by the Fundamental Research Funds for the Central Universities (No.2232013A3-05) (No.2232013A3-05)

  • A simple and convenient method, free of template, has been proposed to synthesize hollow carambolashaped Ag2S microspheres with AgNO3, thiourea (TU), NaCl and diethanolamine as reagents using a microwave-assisted method, at low temperatures of below 100℃. Powder X-ray diffraction (XRD), scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) were employed to characterize the morphology and composition of those microspheres. The results indicated that the hollow carambola-shaped silver sulfide microspheres (with high purity and homogeneous morphology) were prepared by an Ostwald ripening process. A possible formation mechanism of hollow carambola-shaped Ag2S microspheres was proposed.
  • 加载中
    1. [1]

      [1] X.N. Li, X.C. Yang, S.S. Han, et al., Synthesis and characterization of high density and high aspect ratio Ag2S nanoparticle nanowires from a paired cell method, Chin. Sci. Bull. 56(2011) 1828-1831.

    2. [2]

      [2] W.P. Lim, Z.H. Zhang, H.Y. Low, W.S. Chin, Preparation of Ag2S nanocrystals of predictable shape and size, Angew. Chem. (Ⅰ)nt. Ed. 116(2004) 5803-5807.

    3. [3]

      [3] S.C. Han, L.F. Hu, N. Gao, A.A. Al-Ghamdi, X.S. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity, Adv. Funct. Mater. 24(2014) 3725-3733.

    4. [4]

      [4] W.W. Cai, H. Yang, X.Z. Guo, A facile one-step route to synthesize titania hollow microspheres with incontinuous multicavities, Chin. Chem. Lett. 25(2014) 441-446.

    5. [5]

      [5] M. Chen, L.F. Hu, J.X. Xu, et al., ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector, Small 7(2011) 2449-2453.

    6. [6]

      [6] J. Hu, M. Chen, X.S. Fang, L.M. Wu, Fabrication and application of inorganic hollow spheres, Chem. Soc. Rev. 40(2011) 5472-5491.

    7. [7]

      [7] Y. Li, D.L. Li, J.C. Liu, Optical and gas sensing properties of mesoporous hollow ZnO microspheres fabricated via a solvothermal method, Chin. Chem. Lett. 26(2015) 304-308.

    8. [8]

      [8] X.F. Lin, X. Li, D.W. Sun, One step synthesis and characterization of monodispersed Ag2S nanoparticles, Jilin Norm. Univ. J. (Nat. Sci. Ed.) 28(2007) 77-79.

    9. [9]

      [9] F. Gao, Q.Y. Lu, D.Y. Zhao, Controllable assembly of ordered semiconductor Ag2S nanostructures, Nano Lett. 3(2003) 85-88.

    10. [10]

      [10] Q.Y. Lu, F. Gao, D.Y. Zhao, Creation of a unique self-supported pattern of radially aligned semiconductor Ag2S nanorods, Angew. Chem. (Ⅰ)nt. Ed. 114(2002) 2012-2014.

    11. [11]

      [11] X.G. Wen, S.H. Wang, Y.T. Xie, X.Y. Li, S.H. Yang, Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates, J. Phys. Chem. B 109(2005) 10100-10106.

    12. [12]

      [12] H.J. Zhai, H.S. Wang, Ag2S morphology controllable via simple template-free solution route, Mater. Res. Bull. 43(2008) 2354-2360.

    13. [13]

      [13] X.H. Yang, Q.S. Wu, Y.P. Ding, G.X. Zhang, Controlled synthesis and optical properties of the semiconductor Ag2S nanotubes, Rare Met. Mater. Eng. 35(2006) 959-962.

    14. [14]

      [14] Y.Z. Sun, B.B. Zhou, P. Gao, H.C. Mu, L.M. Chu, Single-crystalline Ag2S hollow nanoparticles and their ordered arrays, J. Alloys Compd. 490(2010) L48-L51.

    15. [15]

      [15] Q.Y. Lu, F. Gao, D.Y. Zhao, A template-free method for hollow Ag2S semiconductor with a novel quasi-network microstructure, Chem. Phys. Lett. 360(2002) 355-358.

    16. [16]

      [16] L.H. Dong, Y. Chu, Y. Liu, L.L. Li, Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solutions, J. Colloid (Ⅰ)nterface Sci. 317(2008) 485-492.

    17. [17]

      [17] K. Sahraoui, N. Benramdane, M. Khadraoui, R. Miloua, C. Mathieu, Characterization of silver sulphide thin films prepared by spray pyrolysis using a new precursor silver chloride, Sens. Transd. 27(2014) 319-325.

    18. [18]

      [18] C.Z. Zhu, D. Du, A. Eychmüller, Y.H. Lin, Engineering ordered and nonordered porous noble metal nanostructures:synthesis, assembly, and their applications in electrochemistry, Chem. Rev. 115(2015) 8896-8943.

    19. [19]

      [19] Y.X. Sun, D.W. Zhang, Z.W. Jin, Preparation and Application of Nanomaterials, China Textile & Apparel Press, Beijing, 2010.

    20. [20]

      [20] S. Ahmad, A.A. (Ⅰ)sab, H.P. Perzanowski, Silver((Ⅰ)) complexes of thiourea, Trans. Met. Chem. 27(2002) 782-785.

    21. [21]

      [21] P. Bombicz, (Ⅰ). Mutikainen,M. Krunks, et al., Synthesis, vibrational spectra and X-ray structures of copper((Ⅰ)) thiourea complexes, (Ⅰ)norg. Chim. Acta 357(2004) 513-525.

    22. [22]

      [22] J.G. Yu, H. Guo, S.A. Davis, S.Mann, Fabrication of hollowinorganic microspheres by chemically induced self-transformation, Adv. Funct. Mater. 16(2006) 2035-2041.

  • 加载中
    1. [1]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    2. [2]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    3. [3]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    6. [6]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    7. [7]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    8. [8]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    9. [9]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    10. [10]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    11. [11]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    12. [12]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    13. [13]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    14. [14]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    15. [15]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    16. [16]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    17. [17]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    20. [20]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return