Synthesis and properties of energetic salts based on 3-nitro-5-nitroimino-1,2,4-oxadiazole

Yong-Tao Gao Lin-Man Zhao Fu-Qing Pang Xiu-Juan Qi Jing-Lun Huang Fu-Xue Chen

Citation:  Yong-Tao Gao, Lin-Man Zhao, Fu-Qing Pang, Xiu-Juan Qi, Jing-Lun Huang, Fu-Xue Chen. Synthesis and properties of energetic salts based on 3-nitro-5-nitroimino-1,2,4-oxadiazole[J]. Chinese Chemical Letters, 2016, 27(03): 433-436. doi: 10.1016/j.cclet.2015.12.008 shu

Synthesis and properties of energetic salts based on 3-nitro-5-nitroimino-1,2,4-oxadiazole

    通讯作者: Fu-Xue Chen,
  • 基金项目:

    pressure (Explore 5.0 (6.02 version)). (Explore 5.0 (6.02 version)

摘要: A series of 3-nitro-5-nitroimino-1,2,4-oxadiazole-based energetic salts were synthesized from 3-nitro-5-nitroimino-1,2,4-oxadiazole anion and nitrogen-rich cations. They were fully characterized by IR, elemental analysis and NMR spectroscopy. The structure of triaminoguanidinium salt (1-e) was confirmed by single crystal X-ray diffraction. All salts showed good thermal stability with decomposed temperature ranging from 155℃ to 258℃, and positive heats of formation from 226.0 kJ/mol to 554.1 kJ/mol. Thus, the theoretic detonation pressure was predicted from 28.70 GPa to 37.60 GPa and velocities from 8526 m/s to 9354 m/s. Among them, guanidinium salt (1-c) exhibited both high decomposition temperature (258℃) and detonation velocity (9319 m/s).

English

  • 
    1. [1] D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, Advances in science and technology of modern energetic materials:an overview, J. Hazard. Mater. 151(2008) 289-305.[1] D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, Advances in science and technology of modern energetic materials:an overview, J. Hazard. Mater. 151(2008) 289-305.

    2. [2] Q.H. Zhang, J.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels:a new journey of ionic liquid chemistry, Chem. Rev. 114(2014) 110527-110574.[2] Q.H. Zhang, J.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels:a new journey of ionic liquid chemistry, Chem. Rev. 114(2014) 110527-110574.

    3. [3] M.B. Talawar, R. Sivabalan, T. Mukundan, et al., Environmentally compatible next generation green energetic materials (GEMs), J. Hazard. Mater. 161(2009) 589-607.[3] M.B. Talawar, R. Sivabalan, T. Mukundan, et al., Environmentally compatible next generation green energetic materials (GEMs), J. Hazard. Mater. 161(2009) 589-607.

    4. [4] P.F. Pagoria, G.S. Lee, A.R. Mitchell, R.D. Schmidt, A review of energetic materials synthesis, Thermochim. Acta 384(2002) 187-204.[4] P.F. Pagoria, G.S. Lee, A.R. Mitchell, R.D. Schmidt, A review of energetic materials synthesis, Thermochim. Acta 384(2002) 187-204.

    5. [5] J.P. Agrawal, Recent trends in high-energy materials, Prog. Energy Combust. Sci. 24(1998) 1-30.[5] J.P. Agrawal, Recent trends in high-energy materials, Prog. Energy Combust. Sci. 24(1998) 1-30.

    6. [6] H.X. Gao, J.M. Shreeve, The many faces of FOX-7:a precursor to high-performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 6335-6338.[6] H.X. Gao, J.M. Shreeve, The many faces of FOX-7:a precursor to high-performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 6335-6338.

    7. [7] X. Yin, J.T. Wu, X. Jin, et al., Nitrogen-rich salts of 1-aminotetrazol-5-one:oxygencontaining insensitive energetic materials with high thermal stability, RSC Adv. 5(2015) 60005-60014.[7] X. Yin, J.T. Wu, X. Jin, et al., Nitrogen-rich salts of 1-aminotetrazol-5-one:oxygencontaining insensitive energetic materials with high thermal stability, RSC Adv. 5(2015) 60005-60014.

    8. [8] (a) L. Liu, Y.Q. Zhang, Z.M. Li, S.J. Zhang, Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R=-CH3,-NH2,-N3,-NO2 and-NHNO2) as high performance energetic materials, J. Mater. Chem. A 3(2015) 14768-14778;[8] (a) L. Liu, Y.Q. Zhang, Z.M. Li, S.J. Zhang, Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R=-CH3,-NH2,-N3,-NO2 and-NHNO2) as high performance energetic materials, J. Mater. Chem. A 3(2015) 14768-14778;

    9. [9]

      (b) C.L. He, J.H. Zhang, D.A. Parrish, J.M. Shreeve, 5-Chloro-3,5-dinitropyrazole:a precursor for promising insensitive energetic compounds, J. Mater. Chem. A 1(2013) 2863-2868;(b) C.L. He, J.H. Zhang, D.A. Parrish, J.M. Shreeve, 5-Chloro-3,5-dinitropyrazole:a precursor for promising insensitive energetic compounds, J. Mater. Chem. A 1(2013) 2863-2868;

    10. [10]

      (c) Y.C. Li, Q. Cai, S.H. Li, et al., 1,1'-Azobis-1,2,3-triazole:a high-nitrogen compound with stable N8 structure and photochromism, J. Am. Chem. Soc. 132(2010) 12172-12173.(c) Y.C. Li, Q. Cai, S.H. Li, et al., 1,1'-Azobis-1,2,3-triazole:a high-nitrogen compound with stable N8 structure and photochromism, J. Am. Chem. Soc. 132(2010) 12172-12173.

    11. [9] (a) P.M. Jadhav, S. Radhakrishnan, V.D. Ghule, R.K. Pandey, Energetic salts from nitroformate ion, J. Mol. Model. 21(2015) 1-5;[9] (a) P.M. Jadhav, S. Radhakrishnan, V.D. Ghule, R.K. Pandey, Energetic salts from nitroformate ion, J. Mol. Model. 21(2015) 1-5;

    12. [12]

      (b) H. Wei, C.L. He, J.H. Zhang, J.M. Shreeve, Combination of 1, 2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 9367-9371;(b) H. Wei, C.L. He, J.H. Zhang, J.M. Shreeve, Combination of 1, 2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 9367-9371;

    13. [13]

      (c) M.A. Kettner, T.M. Klapçtke, T.G. Witkowski, F. von Hundling, Synthesis, characterisation and crystal structures of two bi-oxadiazole derivatives featuring the trifluoromethyl group, Chem. Eur. J. 21(2015) 4238-4241.(c) M.A. Kettner, T.M. Klapçtke, T.G. Witkowski, F. von Hundling, Synthesis, characterisation and crystal structures of two bi-oxadiazole derivatives featuring the trifluoromethyl group, Chem. Eur. J. 21(2015) 4238-4241.

    14. [10] (a) Z.D. Fu, R. Su, Y.Wang, et al., Synthesis and characterization of energetic 3-nitro-1,2,4-oxadiazoles, Chem. Eur. J. 18(2012) 1886-1889;[10] (a) Z.D. Fu, R. Su, Y.Wang, et al., Synthesis and characterization of energetic 3-nitro-1,2,4-oxadiazoles, Chem. Eur. J. 18(2012) 1886-1889;

    15. [15]

      (b) Z.D. Fu, C. He, F.X. Chen, Synthesis and characteristics of a novel, high-nitrogen, heat-resistant, insensitive material (NOG2Tz), J. Mater. Chem. 22(2012) 60-63;(b) Z.D. Fu, C. He, F.X. Chen, Synthesis and characteristics of a novel, high-nitrogen, heat-resistant, insensitive material (NOG2Tz), J. Mater. Chem. 22(2012) 60-63;

    16. [16]

      (c) Z.D. Fu, Y. Wang, L. Yang, et al., Synthesis and characteristics of novel, high nitrogen 1,2,4-oxadiazoles, RSC Adv. 4(2014) 11859-11861;(c) Z.D. Fu, Y. Wang, L. Yang, et al., Synthesis and characteristics of novel, high nitrogen 1,2,4-oxadiazoles, RSC Adv. 4(2014) 11859-11861;

    17. [17]

      (d) A.B. Sheremetev, The chemistry of furazans fused to six-and seven-membered heterocycles with one heteroatom, Russ. Chem. Rev. 68(1999) 137-148.(d) A.B. Sheremetev, The chemistry of furazans fused to six-and seven-membered heterocycles with one heteroatom, Russ. Chem. Rev. 68(1999) 137-148.

    18. [11] (a) Z.D. Fu, Y. Wang, F.X. Chen, Comparison of thermal performance of new energetic materials NONHT and NONsHT, Acta Armamentarii 34(2012) 235-239;[11] (a) Z.D. Fu, Y. Wang, F.X. Chen, Comparison of thermal performance of new energetic materials NONHT and NONsHT, Acta Armamentarii 34(2012) 235-239;

    19. [19]

      (b) Y. Wang, Z.D. Fu, F.X. Chen, Effect of new energetic materials NOG2TZ to HMX thermal decomposition behavior, Chin. J. Energy Mater. 22(2014) 22-25;(b) Y. Wang, Z.D. Fu, F.X. Chen, Effect of new energetic materials NOG2TZ to HMX thermal decomposition behavior, Chin. J. Energy Mater. 22(2014) 22-25;

    20. [20]

      (c) Z.D. Fu, Y. Wang, F.X. Chen, The thermal decomposition behavior of new energetic materials NOG, Chin. J. Energy Mater. 20(2012) 583-586.(c) Z.D. Fu, Y. Wang, F.X. Chen, The thermal decomposition behavior of new energetic materials NOG, Chin. J. Energy Mater. 20(2012) 583-586.

    21. [12] Y. K. Wu, G. Y. Chen, Z. M. Zhou, H. S. Dong, A method of prediction compound crystal density, CN 101957300 A (2009).[12] Y. K. Wu, G. Y. Chen, Z. M. Zhou, H. S. Dong, A method of prediction compound crystal density, CN 101957300 A (2009).

    22. [13] H.X. Gao, J.M. Shreeve, Azole-based energetic salts, Chem. Rev. 111(2011) 7377-7436.[13] H.X. Gao, J.M. Shreeve, Azole-based energetic salts, Chem. Rev. 111(2011) 7377-7436.

    23. [14] M.J. Frisch, Gaussian 09, Gaussian, (Ⅰ)nc, Wallingford, CT, 2009.[14] M.J. Frisch, Gaussian 09, Gaussian, (Ⅰ)nc, Wallingford, CT, 2009.

    24. [15] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, 1989.[15] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, 1989.

    25. [16] H.D. Jenkins, D. Tudeal, L. Glasser, Lattice potential energy estimation for complex ionic salts from density measurements, (Ⅰ)norg. Chem. 41(2002) 2364-2367.[16] H.D. Jenkins, D. Tudeal, L. Glasser, Lattice potential energy estimation for complex ionic salts from density measurements, (Ⅰ)norg. Chem. 41(2002) 2364-2367.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1129
  • HTML全文浏览量:  47
文章相关
  • 发布日期:  2015-12-19
  • 收稿日期:  2015-09-23
  • 网络出版日期:  2015-11-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章