Citation:
Gao-Nan Li, Cheng-Wei Gao, Hui Xie, Hao-Hua Chen, Dong Liu, Wei Sun, Guang-Ying Chen, Zhi-Gang Niu. New luminescent cyclometalated iridium(III) complexes containing fluorinated phenylisoquinoline-based ligands:Synthesis, structures, photophysical properties and DFT calculations[J]. Chinese Chemical Letters,
;2016, 27(03): 428-432.
doi:
10.1016/j.cclet.2015.12.007
-
Two new fluorinated phenylisoquinoline-based iridium(Ⅲ) complexes,[Ir(f2piq)2(bipy)] [PF6] (3a) and[Ir(fmpiq)2(bipy)] [PF6] (3b) (f2piq=1-(2,4-difluorophenyl)isoquinoline, fmpiq=1-(4-fluoro-2-methylphenyl) isoquinoline, bipy=2,2'-bipyridine), have been synthesized and fully characterized. Single crystal X-ray diffraction study has been undertaken on complexes 3a and 3b, which show that each adopts the distorted octahedral coordination geometry with the cis-C,C' and trans-N,N' configuration. The photoluminescence spectra of 3a and 3b exhibit yellow and orange emission maxima at 584 and 600 nm, respectively. The frontier molecular orbital diagrams and the lowest-energy electronic transitions of 3a-3b have been calculated with density functional theory (DFT) and time-dependent DFT (TD-DFT). The absorption and emission spectra of complex 3b is red-shifted relative to those of complex 3a, as a consequence of the nature of the methyl group.
-
-
-
[1]
[1] M.A. Baldo, D.F. O'Brien, Y. You, et al., Highly emission from electroluminescent phosphorescent organic devices, Nature 395(1998) 151-154.
-
[2]
[2] M.A. Baldo, S. Lamansky, P.E. Burrows, et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 75(1999) 4-6.
-
[3]
[3] M.A. Baldo, C. Adachi, S.R. Forrest, et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electrontransporting materials, Appl. Phys. Lett. 77(2000) 904-906.
-
[4]
[4] S. Lamansky, P. Djurovich, D. Murphy, et al., Synthesis and characterization of phosphorescent cyclometalated iridium complexes, (Ⅰ)norg. Chem. 40(2001) 1704-1711.
-
[5]
[5] N.G. Park, M.Y. Kwak, B.O. Kim, et al. Jpn. J. Appl. Phys. 41(2002) 1523-1526.
-
[6]
[6] A.B. Tamayo, B.D. Alleyne, P.(Ⅰ). Djurovich, et al., Synthesis and characterization of facial and meridional tris-cyclometalated iridium(Ⅲ) complexes, J. Am. Chem. Soc. 125(2003) 7377-7387.
-
[7]
[7] W.Y. Wong, C.L. Ho, Z.Q. Gao, et al., Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphores, Angew. Chem. (Ⅰ)nt. Ed. 45(2006) 7800-7803.
-
[8]
[8] H.H. Chou, C.H. Cheng, A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Adv. Mater. 22(2010) 2468-2471.
-
[9]
[9] Y.T. Tao, Q.A. Wang, C.L. Yang, et al., Multifunctional triphenylamine/oxadiazole hybrid as host and exciton-blocking material:high efficiency green phosphorescent OLEDs using easily available and common materials, Adv. Funct. Mater. 20(2010) 2923-2929.
-
[10]
[10] D. Sykes, (Ⅰ).S. Tidmarsh, A. Barbieri, et al., d→f energy transfer in a series of (Ⅰ)r(Ⅲ)/Eu(Ⅲ) dyads:energy-transfer mechanisms and white-light emission, (Ⅰ)norg. Chem. 50(2011) 11323-11339.
-
[11]
[11] Y. Zheng, A.S. Batsanov, R.M. Edkins, et al., Thermally induced defluorination during a mer to fac transformation of a blue-green phosphorescent cyclometalated iridium(Ⅲ) complex, (Ⅰ)norg. Chem. 51(2012) 290-297.
-
[12]
[12] C.L. Ho, W.Y. Wong, Q. Wang, et al., A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element WOLED exploiting excitonmanaged fluorescence/phosphorescence, Adv. Funct. Mater. 18(2008) 928-937.
-
[13]
[13] F. Babudri, G.M. Farinola, F. Naso, et al., Fluorinated materials for electronic and optoelectronic applications:the role of the fluorine atom, Chem. Commun. (2007) 1003-1022.
-
[14]
[14] Z.G. Niu, D. Liu, J. Zuo, et al., Four new cyclometalated phenylisoquinoline-based (Ⅰ)r(Ⅲ) complexes:syntheses, structures, properties and DFT calculations, (Ⅰ)norg. Chem. Commun. 43(2014) 146-150.
-
[15]
[15] Agilent Technologies (Ⅰ)nc., CrysAlisPro Version 1.171.36.21, Agilent Technologies (Ⅰ)nc., Santa Clara, CA, USA, 2012.
-
[16]
[16] G.M. Sheldrick, A short history of shelx, Acta Crystallogr. Sect. A:Found. Crystallogr. 64(2008) 112-122.
-
[17]
[17] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, et al., Olex2:a complete structure solution, refinement and analysis program, J. Appl. Cryst. 42(2009) 339-341.
-
[18]
[18] A.L. Spek, Single-crystal structure validation with the program platon, J. Appl. Crystallogr. 36(2003) 7-13.
-
[19]
[19] P.V.D. Sluis, A.L. Spek, Bypass:an effective method for the refinement of crystal structures containing disordered solvent regions, Acta Crystallogr. Sect. A:Found. Crystallogr. 46(1990) 194-201.
-
[20]
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision A. 01, Gaussian, (Ⅰ)nc, Wallingford, CT, 2009.
-
[21]
[21] C. Lee, W. Yang, R.G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B:Condens. Matter 37(1988) 785-789.
-
[22]
[22] B. Miehlich, A. Savin, H. Stoll, et al., Results obtained with the correlation energy density functionals of becke and lee, yang and parr, Chem. Phys. Lett. 157(1989) 200-206.
-
[23]
[23] A.D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange, J. Chem. Phys. 98(1993) 5648-5652.
-
[24]
[24] M. Cossi, N. Rega, G. Scalmani, et al., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem. 24(2003) 669-681.
-
[25]
[25] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105(2005) 2999-3093.
-
[26]
[26] A. Juris, V. Balzani, F. Barigelletti, et al., Ru(Ⅱ) polypyridine complexes:photophysics, photochemistry, electrochemistry, and chemiluminescence, Coord. Chem. Rev. 84(1988) 85-227.
-
[27]
[27] M. Frank, M. Nieger, F. Vögtle, et al., Dinuclear RuⅡ and/or OsⅡ complexes of bis, (Ⅰ)norg. Chim. Acta. 242(1996) 281-291.
-
[28]
[28] K.A. King, P.J. Spellane, R.J. Watts, Excited-state properties of a triply orthometalated iridium(Ⅲ) complex, J. Am. Chem. Soc. 107(1985) 1431-1432.
-
[29]
[29] S. Kammer, (Ⅰ). Starke, A. Pietrucha, et al., 1,12-diazaperylene and 2,11-dialkylated-1,12, Dalton Trans. 41(2012) 10219-10227.
-
[30]
[30] M. Bandini, M. Bianchi, G. Valenti, et al., Electrochemiluminescent functionalizable cyclometalated thiophene-based iridium(Ⅲ) complexes, (Ⅰ)norg. Chem. 49(2010) 1439-1448.
-
[31]
[31] S.K. Leung, K.Y. Kwok, K.Y. Zhang, et al., Design of luminescent biotinylation reagents derived from cyclometalated iridium(Ⅲ) and rhodium(Ⅲ) bis(pyridylbenzaldehyde) complexes, (Ⅰ)norg. Chem. 49(2010) 4984-4995.
-
[32]
[32] T. Hofbeck, H. Yersin, The triplet state of fac-(Ⅰ)r(ppy)3, (Ⅰ)norg. Chem. 49(2010) 9290-9299.
-
[33]
[33] Q.L. Xu, C.C. Wang, T.Y. Li, et al., Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand, (Ⅰ)norg. Chem. 52(2013) 4916-4925.
-
[34]
[34] M. Tavasli, T.N. Moore, Y.H. Zheng, et al., Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(Ⅲ) complexes of carbazole-based ligands:synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem. 22(2012) 6419-6428.
-
[35]
[35] K.R.J. Thomas, M. Velusamy, J.T. Lin, et al., Efficient red-emitting cyclometalated iridium(Ⅲ) complexes containing lepidine-based ligands, (Ⅰ)norg. Chem. 44(2005) 5677-5685.
-
[36]
[36] M.S. Lowry, W.R. Hudson, R.A. Pascal Jr., et al., Accelerated luminophore discovery through combinatorial synthesis, J. Am. Chem. Soc. 126(2004) 14129-14135.
-
[37]
[37] Q. Zhao, S.J. Liu, M. Shi, et al., Series of new cationic iridium(Ⅲ) complexes with tunable emission wavelength and excited state properties:structures, theoretical calculations, and photophysical and electrochemical properties, (Ⅰ)norg. Chem. 45(2006) 6152-6160.
-
[1]
-
-
-
[1]
Tiantian Gong , Yanan Chen , Shuo Wang , Miao Wang , Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370
-
[2]
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
-
[3]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212
-
[4]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[5]
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
-
[6]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[7]
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
-
[8]
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
-
[9]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[10]
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
-
[11]
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
-
[12]
Zhexin Chen , Yuqing Shi , Fang Zhong , Kai Zhang , Furong Zhang , Shenghong Xie , Zhongbin Cheng , Qian Zhou , Yi-You Huang , Hai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956
-
[13]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[14]
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
-
[15]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[16]
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
-
[17]
Yanting Yang , Guorong Wang , Kangjing Li , Wen Yang , Jing Zhang , Jian Zhang , Shili Li , Xianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123
-
[18]
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
-
[19]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[20]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(653)
- HTML views(24)