Citation:
Rong-Kun Li, Quan-Li Yang, Yi Liu, Dong-Wei Li, Nian-Yu Huang, Ming-Guo Liu. A novel and green synthesis of indolone-N-amino acid derivatives via the Passerini three-component reactions in water[J]. Chinese Chemical Letters,
;2016, 27(03): 345-348.
doi:
10.1016/j.cclet.2015.11.008
-
A green Passerini three-component reaction of 2-(4-oxo-4,5,6,7-tetrahydro-1H-indol-1-yl)acetic acid with alkyl or aryl isocyanides and aldehydes was reported under aqueous conditions at 35℃ for 1 h, and 21 indolone-N-amino acid derivatives were prepared in high yields of 42%-99%. Their structures were characterized by IR, ESI-MS, NMR and elemental analysis, and the possible mechanisms have been also proposed. The highly efficient and eco-friendly method provides a facile access to a library of indolone-N-amino acid derivatives for future research on bioactivity screening.
-
-
-
[1]
[1] (a) L.H. Meng, X.M. Li, Y.B.G. Liu, Polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity, Chin. Chem. Lett. 26(2015) 610-612;
-
[2]
(b) T.L. Su, T.C. Lee, R. Kakadiya, The development of bis (hydroxymethyl) pyrrole analogs as bifunctional DNA cross-linking agents and their chemotherapeutic potential, Eur. J. Med. Chem. 69(2013) 609-621.
-
[3]
[2] V. Estévez, M. Villacampa, J.C. Menéndez, Recent advances in the synthesis of pyrroles by multicomponent reactions, Chem. Soc. Rev. 43(2014) 4633-4657.
-
[4]
[3] D. Holten, D.F. Bocian, J.S. Lindsey, Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices, Acc. Chem. Res. 35(2002) 57-69.
-
[5]
[4] (a) J. Chen, J.J. Chen, X.J. Yao, K. Gao, Kopsihainanines A and B, two unusual alkaloids from Kopsia hainanensis, Org. Biomol. Chem. 9(2011) 5334-5366;
-
[6]
(b) O. Wagnières, Z. Xu, Q. Wang, J. Zhu, Unified strategy to monoterpene indole alkaloids:total syntheses of (±)-Goniomitine, (±)-1,2-Dehydroaspidospermidine, (±)-Aspidospermidine. (±)-Vincadifformine, and (±)-Kopsihainanine A, J. Am. Chem. Soc. 136(2014) 15102-15108;
-
[7]
(c) C.J. Gartshore, D.W. Lupton, Enantioselective palladium-catalyzed decarboxylative allylation of carbazolones and indolones:formal synthesis of (+)-Kopsihainanine A, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 4113-4116.
-
[8]
[5] (a) C.C. Chiang, Y.H. Lin, S.F. Lin, et al., Discovery of pyrrole-indoline-2-ones as Aurora kinase inhibitors with a different inhibition profile, J. Med. Chem. 53(2010) 5929-5941;
-
[9]
(b) C.W. Zapf, J.D. Bloom, J.L. McBean, et al., Design and SAR of macrocyclic Hsp90 inhibitors with increased metabolic stability and potent cell-proliferation activity, Bioorg. Med. Chem. Lett. 21(2011) 2278-2282.
-
[10]
[6] (a) E. Najahi, A. Valentin, P.L. Fabre, K. Reybier, F. Nepveu, 2-Aryl-3H-indol-3-ones:synthesis, electrochemical behaviour and antiplasmodial activities, Eur. J. Med. Chem. 78(2014) 269-274;
-
[11]
(b) E. Najahi, N.V. Rakotoarivelo, A. Valentin, F. Nepveu, Amino derivatives of indolone-N-oxide:preparation and antiplasmodial properties, Eur. J. Med. Chem. 76(2014) 369-375.
-
[12]
[7] F. Nepveu, E. Najahi, A. Valentin, Antimalarial activities of indolones and derivatives, Curr. Top. Med. Chem. 14(2014) 1643-1652.
-
[13]
[8] M. O'Connell, W. Zeller, J. Burgeson, et al., Peri-substituted hexahydro-indolones as novel, potent and selective human EP3 receptor antagonists, Bioorg. Med. Chem. Lett. 19(2009) 778-782.
-
[14]
[9] X. Li, R. Vince, Conformationally restrained carbazolone-containing α,γ-diketo acids as inhibitors of H(Ⅰ)V integrase, Bioorg. Med. Chem. 14(2006) 2942-2955.
-
[15]
[10] (a) P. Barraja, L. Caracausi, P. Diana, et al., Synthesis and antiproliferative activity of the ring system[1,2] oxazolo[4,5-g]indole, Bioorg.Med. Chem. 7(2012) 1901-1904;
-
[16]
(b) R. Martínez, A. Clarα-Sosa, M.T.R. Apan, Synthesis and cytotoxic evaluation of new (4,5,6,7-tetrahydro-indol-1-yl)-3-R-propionic acids and propionic acid ethyl esters generated bymolecularmimicry, Bioorg.Med. Chem. 15(2007) 3912-3918.
-
[17]
[11] Y. Kim, Y.J. You, N.H. Nam, B.Z. Ahn, Prodrugs of 4'-demethyl-4-deoxypodophyllotoxin:synthesis and evaluation of the antitumor activity, Bioorg. Med. Chem. Lett. 12(2002) 3435-3438.
-
[18]
[12] M. Sulur, P. Sharma, R. Ramakrishnan, et al., Development of scalable manufacturing routes to AZD1981. Application of the Semmler-Wolff aromatisation for synthesis of the indole-4-amide core, Org. Process Res. Dev. 16(2012) 1746-1753.
-
[19]
[13] A. Sato, L. McNulty, K. Cox, et al., A novel class of in vivo active anticancer agents:achiral seco-amino-and seco-hydroxy cyclopropylbenzo[e]indolone (seco-CB(Ⅰ)) analogues of the duocarmycins and CC-1065, J. Med. Chem. 48(2005) 3903-3918.
-
[20]
[14] S. Werner, P.S. (Ⅰ)yer, M.D. Fodor, et al., Solution-phase synthesis of a tricyclic pyrrole-2-carboxamide discovery library applying a Stetter-Paal-Knorr reaction sequence, J. Comb. Chem. 8(2006) 368-380.
-
[21]
[15] D.C. Rogness, R.C. Larock, Rapid synthesis of the indole-indolone scaffold via[3+2] annulation of arynes by methyl indole-2-carboxylates, Tetrahedron Lett. 50(2009) 4003-4008.
-
[22]
[16] (a) C. Graaff, E.R. Ruijter, V.A. Orru, Recent developments in asymmetric multicomponent reactions, Chem. Soc. Rev. 41(2012) 3969-4009;
-
[23]
(b) B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin, Small heterocycles in multicomponent reactions, Chem. Rev. 114(2014) 8323-8359;
-
[24]
(c) J.J. Sahn, B.A. Granger, S.F. Martin, Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification, Org. Biomol. Chem. 12(2014) 7659-7672.
-
[25]
[17] (a) A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89;
-
[26]
(b) G. Koopmanschap, E. Ruijter, R.V.A. Orru, (Ⅰ)socyanide-based multicomponent reactions towards cyclic constrained peptidomimetics, Beilstein J. Org. Chem. 10(2014) 544-598;
-
[27]
(c) A. Ramazani, A. Rezaei, Novel one-pot, four-component condensation reaction:an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-Wittig sequence, Org. Lett. 12(2010) 2852-2855.
-
[28]
[18] (a) J.A. Jee, S. Song, J.G. Rudick, Enhanced reactivity of dendrons in the Passerini three-component reaction, Chem. Commun. 51(2015) 5456-5459;
-
[29]
(b) F.D. Moliner, L. Banfi, R. Riva, A. Basso, Beyond Ugi and Passerini reactions:multicomponent approaches based on isocyanides and alkynes as an efficient tool for diversity oriented synthesis, Comb. Chem. High Throughput Screen. 14(2011) 782-810;
-
[30]
(c) A.R. Kazemizadeh, A. Ramazani, Synthetic applications of Passerini reaction, Curr. Org. Chem. 16(2012) 418-450.
-
[31]
[19] (a) L. Wang, Z.L. Ren, M. Chen, M.W. Ding, One-pot synthesis of 24,5-trisubstituted oxazoles via a tandem Passerini three-component coupling/Staudinger/Aza-Wittig/(Ⅰ)somerization reaction, Synlett 25(2014) 721-723;
-
[32]
(b) J. Wu, J.C. Liu, L. Wang, M.W. Ding, Facile synthesis of 5-carboxamideoxazolines via a Passerini 3CC-Staudinger-aza-Wittig sequence, Synlett 19(2011) 2880-2882.
-
[33]
[20] (a) A. Domling, W. Wang, K. Wang, Chemistry and biology of multicomponent reactions, Chem. Rev. 112(2012) 3083-3135;
-
[34]
(b) B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin, Small heterocycles in multicomponent reactions, Chem. Rev. 114(2014) 8323-8359.
-
[35]
[21] (a) U.M. Lindstrom, Stereoselective organic reactions in water, Chem. Rev. 102(2002) 2751-2772;
-
[36]
(b) Y. Peng, G. Song, R. Dou, Surface cleaning under combined microwave and ultrasound irradiation:flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8(2006) 573-575.
-
[37]
[22] A. Ramazani, A. Rezaei, A.T. Mahyari, M. Rouhani, M. Khoobi, Three-component reaction of an isocyanide and a dialkyl acetylene dicarboxylate with a phenacyl halide in the Presence of water:an efficient method for the one-pot synthesis of γ-iminolactone derivatives, Helv. Chim. Acta 93(2010) 2033-2036.
-
[38]
[23] A. Ramazani1, K. Dastanra, F.Z. Nasrabadi, et al., Silica nanoparticles as a high efficient catalyst for the one-pot synthesis of 3-oxo-3-phenylpropanamid derivatives from isocyanides, phenylacetaldehyde and secondary amines, Turk. J. Chem. 36(2012) 467-476.
-
[39]
[24] H. Eshghi, M. Rahimizadeh, A. Shiri, P. Sedaghat, One-pot synthesis of benzimidazoles and benzothiazoles in the presence of Fe(HSO4)3 as a new and efficient oxidant, Bull. Korean Chem. Soc. 33(2012) 515-518.
-
[40]
[25] A. Ramazani, S.W. Joo, F.Z. Nasrabadi, Environmentally green synthesis of thioformamide derivatives, Turk. J. Chem. 37(2013) 405-412.
-
[41]
[26] J. Taran, A. Ramazani, S.W. Joo, K.Ś lepokura, T. Lis, Synthesis of novel a-(acyloxy)-a-(quinolin-4-yl)acetamides by a three-component reaction between an isocyanide, quinoline-4-carbaldehyde, and arenecarboxylic acids, Helv. Chim. Acta 97(2014) 1088-1096.
-
[42]
[27] (a) A. Jafari, A. Ramazani, M. Rouhani, Efficient one-pot synthesis of substituted propanamide derivatives by a three-component reaction of 2-oxopropyl benzoate. 1,1,3,3-Tetramethylbutyl isocyanide and aromatic carboxylic acids in water, Bulg. Chem. Commun. 47(2015) 156-160;
-
[43]
(b) A. Ramazani, M. Rouhani, S.W. Joo, Catalyst-free sonosynthesis of highly substituted propanamide derivatives in water, Ultrason. Sonochem. 28(2016) 393-399.
-
[44]
[28] P. Barraja, P. Diana, A. Lauria, et al., Pyrrolo[2,3-h]quinolinones:synthesis and photochemotherapic activity, Bioorg. Med. Chem. Lett. 13(2003) 2809-2811.
-
[45]
[29] A.R. Bharadwaj, K.A. Scheidt, Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot Sila-Stetter/Paal-Knorr strategy, Org. Lett. 6(2004) 2465-2468.
-
[46]
[30] (a) H. Yu, T. Gai, W.L. Sun, M.S. Zhang, Radical reduction of Passerini 3CR adducts by Sm(Ⅰ)2/HMPA, Chin. Chem. Lett. 22(2011) 379-381;
-
[47]
(b) S.C. Solleder, M.A.R. Meier, Sequence control in polymer chemistry through the Passerini three-component reaction, Angew. Chem. (Ⅰ)nt. Ed. 53(2014) 711-714;
-
[48]
(c) A.A. Esmaeili, S.A. Ghalandarabad, S. Jannati, A novel and efficient synthesis of 3,3-disubstituted indol-2-ones via Passerini three-component reactions in the presence of 4Å molecular sieves, Tetrahedron Lett. 54(2013) 406-408.
-
[49]
[31] (a) H.G.O. Alvim, E.N. Silva Júnior, B.A.D. Neto, What do we know about multicomponent reactions?. Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs, RSC Adv. 4(2014) 54282-54299;
-
[50]
(b) S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Finding reaction pathways for multicomponent reactions:the Passerini reaction is a four-component reaction, Angew. Chem. 123(2011) 670-675;
-
[51]
(c) R. Ramozzi, K. Morokuma, Revisiting the Passerini reaction mechanism:existence of the nitrilium, organocatalysis of its formation, and solvent effect, J. Org. Chem. 80(2015) 5652-5657.
-
[52]
[32] (a) A. Chanda, V.V. Fokin, Organic synthesis "on water", Chem. Rev. 109(2009) 725-748;
-
[53]
(b) N. Shapiro, A. Vigalok, Highly efficient organic reactions "on water", "in water", and both, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 2891-2894.
-
[1]
-
-
-
[1]
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
-
[2]
Ruike Hu , Kangmin Wang , Junxiang Liu , Jingxian Zhang , Guoliang Yang , Liqiu Wan , Bijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113
-
[3]
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
-
[4]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[5]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[6]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[7]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[8]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[9]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[10]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[11]
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
-
[12]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[13]
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
-
[14]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[15]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[16]
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
-
[17]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[18]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[19]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[20]
Min-Hang Zhou , Jun Jiang , Wei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(731)
- HTML views(21)