Citation:
Yang Zheng, Ren-Jun Li, Zhen Zhan, Yan Zhou, Li Hai, Yong Wu. Fe-catalyzed regioselective Friedel-Crafts hydroxyalkylation of N-substituted glyoxylamide with indoles[J]. Chinese Chemical Letters,
;2016, 27(01): 41-46.
doi:
10.1016/j.cclet.2015.09.023
-
An efficient regioselective Friedel-Crafts hydroxyalkylation of N-substituted glyoxylamide with various indoles catalyzed by Lewis acids was developed. The reactions proceeded smoothly at room temperature and the 2-hydroxy-2-(1H-indol-3-yl)-N-substituted acetamide resulted from the reactions catalyzed by FeSO4 were synthesized in excellent yields(up to 93%). While the bisindole compounds were obtained when FeCl3 was used as a catalyst in excellent yields(up to 92%). A possible mechanism was proposed.
-
-
-
[1]
[1] For reviews of Friedel-Crafts reactions, see:(a) GA. Olah, Crafts Chemistry, Wiley-Interscience, New York, 1973;(b) R.M. Roberts, A.A. Khalaf, Friedel-Crafts Alkylation Chemistry. A Century of Discovery, M. Dekker, New York, 1984;(c) H. Heaney, in:B.M. Trost, I. Fleming(Eds.), Comprehensive organic synthesis, Vol. 2, Pergamon, New York, 1991, p. 733.
-
[2]
[2] For representative reviews, see:(a) C Zhang, H. Ye, A.F. Moretto, et al., Facile solid-phase construction of indole derivatives based on a traceless,activating sulfonyl linker,Org.Lett.2(2000)89-92;(b) N.N. Wan, Y.L. Yang, W.P. Wang, Z.F. Xie, J.D. Wang, Friedel-Crafts alkylation of indoles with nitroalkenes catalyzed by Cu(Ⅱ)-imine complex, Chin. Chem. Lett. 22(2011) 1155-1158;(c) G.R.Humphrey,J.T.Kuethe,Practical methodologies for the synthesis of indoles, Chem. Rev. 106(2006) 2875-2911;(d) K.Higuchi,T.Kawasaki,Simple indole alkaloids and those with a nonrearranged monoterpenoid unit, Nat. Prod. Rep. 24(2007) 843-868;(e) J. Yang, J. Zhang, T.T. Chen, et al., Sulfamic acid as a cost-effective and recyclable solid acid catalyst for Friedel-Crafts alkylation of indole with α,β-unsaturated carbonyl compound and benzyl alcohol, Chin. Chem. Lett. 22(2011) 1391-1394.
-
[3]
[3](a) P.S. Prathima, P. Rajesh, J.V. Rao, et al., On water expedient synthesis of 3-indolyl-3-hydroxy oxindole derivatives and their anticancer activity in vitro, Eur. J. Med. Chem. 84(2014) 155-159;(b) J.B. Engel, T. Schoenhals, C. Weidler, et al., Tubulin inhibitor AEZS 112 inhibits the growth of experimental human ovarian and endometrial cancers irrespective of caspase inhibition, Oncol. Rep. 22(2009) 361-367;(c) Y. Wang, X. Tang, Z. Shao, et al., Indole-based alkaloids from deep-sea bacterium Shewanella piezotolerans with antitumor activities, J. Antibiot. 67(2014) 395-399;(d) A. Kamal, Y.V. Srikanth, M.N. Khan, T.B. Shaik, M. Ashraf, Synthesis of 33-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity, Bioorg. Med. Chem. Lett. 20(2010) 5229-5231.
-
[4]
[4](a) S. Peddibhotla, 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities, Curr. Bioact. Compd. 5(2009) 20-38;(b) C.V. Galliford, K.A. Scheidt, Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents, Angew. Chem. Int. Ed. 46(2007) 8748-8758;(c) S.P. Ivonin, A.V. Lapandin, A.A. Anishchenko, V.G. Shtamburg, Reaction of arylglyoxals with electron-rich benzenes and π-excessive heterocycles. Facile synthesis of heteroaryl α-acyloins, Syn. Commun. 34(2004) 451-461;(d) P.S. Lai, M.S. Taylor, Preparation of substituted oxazoles by Ritter reactions of α-oxo tosylates, Synthesis 9(2010) 1449-1452.
-
[5]
[5](a) T. Ueda, M. Inada, I. Okamoto, N. Morita, O. Tamura, Synthesis of maremycins A and D1 via cycloaddition of a nitrone with(E)-3-ethylidene-1-methylindolin-2-one, Org. Lett. 10(2008) 2043-2046;(b) T. Itoh, H. Ishikawa, Y. Hayashi, Asymmetric Aldol reaction of acetaldehyde and isatin derivatives for the total syntheses of ent-convolutamydine E and CPC-1 and a half fragment of madindoline A and B, Org. Lett. 11(2009) 3854-3857;(c) S.N. Lin, Z.Q. Yang, B.H.B. Kwok, M. Koldobskiy, C.M. Crews, Total synthesis of TMC-95A and-B via a new reaction leading to Z-enamides. Some preliminary findings as to SAR, J. Am. Chem. Soc. 126(2004) 6347-6355.
-
[6]
[6] For representative reviews, see:(a) YH. Hui, Y.C. Chen, H.W. Gong, Z.F. Xie, Convenient synthesis of bis(indolyl)alkanes by dithiocarbohydrazone Schiff, base/Zn(ClO4)2·6H2O catalyzed Friedel-Crafts reaction of indoles with imines, Chin. Chem. Lett. 25(2014) 163-165;(b) B.V.S. Reddy, N. Rajeswari, M. Sarangapani, et al., Iodine-catalyzed condensation of isatin with indoles:a facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity, Bioorg. Med. Chem. Lett. 22(2012) 2460-2463;(c) P. Paira, A. Hazra, S. Kumar, et al., Efficient synthesis of 3,3-diheteroaromatic oxindole analogues and their in vitro evaluation for spermicidal potential, Bioorg. Med. Chem. Lett. 19(2009) 4786-4789.
-
[7]
[7] H.M. Li, Y.Q. Wang, L. Deng, Enantioselective Friedel-Crafts reaction of indoles with carbonyl compounds catalyzed by bifunctional cinchona alkaloids, Org. Lett. 8(2006) 4063-4065.
-
[8]
[8] M. Willot, J.C. Chen, J.P. Zhu, Combination of lithium chloride and hexafluoroisopropanol for Friedel-Crafts reactions, Synlett 4(2009) 577-580.
-
[9]
[9] Y.H. Hui, Q. Zhang, J. Jiang, et al., Highly efficient asymmetric. synthesis of 3-indolyl(hydroxy) acetates via Friedel-Crafts alkylation of indoles, J. Org. Chem. 74(2009) 6878-6880.
-
[10]
[10](a) W.S. Chen, Y.Z. Liu, Z.R. Chen, A highly efficient and practical new allylboronate tartramide for the asymmetric allylboration of achiral aldehydes, Eur. J. Org. Chem.(2005) 1665-1668;(b) W.B. Wu, X.Q. Yuan, J. Hu, et al., Catalytic asymmetric construction of chiral hydropyridazines via conjugate addition of N-monosubstituted hydrazones to enones, Org. Lett. 15(2013) 4524-4527.
-
[11]
[11](a) J.M. Finefield, R.M. Williams, Synthesis of notoamide J:a potentially pivotal intermediate in the biosynthesis of several prenylated indole alkaloids, J. Org. Chem. 75(2010) 2785-2789;(b) A. Akao, N. Nonoyama, T. Mase, N. Yasuda, Development of large-scale preparations of indole derivatives:evaluation of potential thermal Hazards and studies of reaction kinetics and mechanisms, Org. Process. Res. Dev. 10(2006) 1178-1183;(c) P.Y. Choy, C.P. Lau, F.Y. Kwong, Palladium-catalyzed direct and regioselective C-H bond functionalization/oxidative acetoxylation of indoles, J. Org. Chem. 76(2011) 80-84;(d) J.M. Ontoria, S.D. Marco, I. Conte, et al., The design and enzyme-bound crystal structure of indoline based peptidomimetic inhibitors of hepatitis C virus NS3 protease, J. Med. Chem. 47(2004) 6443-6446.
-
[12]
[12](a) S. Taliani, M.L. Trincavelli, B. Cosimelli, et al., Modulation of A2B adenosine receptor by 1-benzyl-3-ketoindole derivatives, Eur. J. Med. Chem. 69(2013) 331-337;(b) D.A. James, K. Koya, H. Li, et al., Indole-and indolizine-glyoxylamides displaying cytotoxicity against multidrug resistant cancer cell lines, Bioorg. Med. Chem. Lett. 18(2008) 1784-1787.
-
[13]
[13](a) Y. Wang, X. Tang, Z. Shao, et al., Indole-based alkaloids from deep-sea bacterium Shewanella piezotolerans with antitumor activities, J. Antibiot. 67(2014) 395-399;(b) M. Yoo, S.U. Choi, K.Y. Choi, et al., Trisindoline synthesis and anticancer activity, Biochem. Biophys. Res. Commun. 376(2008) 96-99.
-
[14]
[14](a) M.J. Thompson, V. Borsenberger, J.C. Louth, K.E. Judd, B. Chen, Design, synthesis, and structure-activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity in a cell line model of prion disease, J. Med. Chem. 52(2009) 7503-7511;(b) L. Liang, G.D. Rao, H.L. Sun, J.L. Zhang, Aerobic oxidation of primary alcohols catalyzed by copper salts and catalytically active m-hydroxyl-bridged trinuclear copper intermediate, Adv. Synth. Catal. 352(2010) 2371-2377.
-
[15]
[15](a) J. Hao, S. Taktak, K. Aikawa, et al., Biphenylphosphine-palladium(ii) complexes-catalyzed Friedel-Crafts reaction for the synthesis of α-amino and ahydroxy indolylacetates and diindolylacetates, Synlett(2001) 1443;(b) Y.P. Zhu, M.C. Liu, F.C. Jia, et al., Metal-free sp3 C-H bond dual-(Het)arylation:I2-promoted domino process to construct 2,2-bisindolyl-1-arylethanones, Org. Lett. 14(2012) 3392-3395;(c) H.M. Dong, H.H. Lu, L.Q. Lu, C.B. Chen, W.J. Xiao, Asymmetric Friedel-Crafts alkylations of indoles with ethyl glyoxylate catalyzed by(S)-BINOL-Titanium(IV) complex:direct access to enantiomerically enriched 3-indolyl(hydroxy)acetates, Adv. Synth. Catal. 349(2007) 1597-1603.
-
[1]
-
-
-
[1]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[2]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[3]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[4]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[5]
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
-
[6]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[7]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[8]
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
-
[9]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[10]
Ze-Yuan Ma , Mei Xiao , Cheng-Kun Li , Adedamola Shoberu , Jian-Ping Zou . S-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076
-
[11]
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
-
[12]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[13]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[14]
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
-
[15]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[16]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[18]
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
-
[19]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[20]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(711)
- HTML views(27)