Citation:
Wei Guo. Base mediated direct C-H amination for pyrimidines synthesis from amidines and cinnamaldehydes using oxygen as green oxidants[J]. Chinese Chemical Letters,
;2016, 27(01): 47-50.
doi:
10.1016/j.cclet.2015.09.012
-
A direct metal-free C-H amination reaction of cinnamaldehydes and amidines to realize the synthesis of polysubstituted pyrimidines was developed in the presence of base. This greener synthetic methodology provides a straightforward approach to the synthesis of a variety of pyrimidine derivatives under mild reaction condition using oxygen as sole oxidants.
-
Keywords:
- C-H amination,
- Pyrimidines,
- Amidines,
- Cinnamaldehydes,
- Oxygen
-
-
-
[1]
[1] M.W. Martin, J. Newcomb, J.J. Nunes, et al., Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of lck:synthesis, SAR, and in vivo antiinflammatory activity, J. Med. Chem. 49(2006) 4981-4991.
-
[2]
[2](a) S. Lee, D. Lim, E. Lee, et al., Discovery of carbohybrid-based 2-aminopyrimidine analogues as a new class of rapid-acting antimalarial agents using imagebased cytological profiling assay, J. Med. Chem. 57(2014) 7425-7434;(b) F. Arioli, S. Borrelli, F. Colombo, et al., N-[2-Methyl-5-(triazol-1-yl)phenyl]-pyrimidin-2-amine as a scaffold for the synthesis of inhibitors of Bcr-Abl, ChemMedChem 6(2011) 2009-2018.
-
[3]
[3](a) H. Huang, W. Guo, W. Wu, et al., Copper-catalyzed oxidative C(sp3)-H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-trizaines from amidines, Org. Lett. 17(2015) 2894-2897;(b) W. Guo, K. Huang, F. Ji, et al., A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulations of amidines and methylarenes, Chem. Commun. 51(2015) 8857-8860.
-
[4]
[4] K.S. Vadagaonkar, H.P. Kalmode, S. Prakash, et al., Greener[3+3] tandem annulation-oxidation approach towards the synthesis of substituted pyrimidines, New J. Chem. 39(2015) 3639-3645.
-
[5]
[5] M.C. Bagley, Z. Lin, S.J.A. Pope, Barium manganate in microwave-assisted oxidation reactions:synthesis of solvatochromic 2,4,6-triarylpyrimidines, Tetrahedron Lett. 50(2009) 6818-6823.
-
[6]
[6] M. Lin, Q.Z. Chen, Y. Zhu, Copper(Ⅱ)-catalyzed synthesis of pyrimidines from propargylic alcohols and amidine:a propargylation-cyclization-oxidation tandem reaction, Synlett 8(2011) 1179-1183.
-
[7]
[7] A. Guirado, E. Alarcón, Y. Vicente, et al., A new improved method for the synthesis of 2,4-diarylpyrimidines starting from 2,2,2-trichloroethylideneacetophenones, Tetrahedron Lett. 54(2013) 5115-5117.
-
[8]
[8] J. Chen, R. Properzi, D.P. Uccello, et al., One-pot oxidation and rearrangement of propargylamines and in situ pyrazole synthesis, Org. Lett. 16(2014) 4146-4149.
-
[9]
[9] R.M. de Figueiredo, Transition-metal-catalyzed diamination of olefins, Angew. Chem. Int. Ed. 48(2009) 1190-1193.
-
[10]
[10](a) Y. Zhu, R.G. Cornwal, H. Du, et al., Catalytic diamination of olefins via N-N bond activation, Acc. Chem. Res. 47(2014) 3665-3678;(b) D. Chen, H.J. Mo, D.B. Chen, Direct C-H amination for indole synthesis from N-Ts-2-styrylaniline derivatives catalyzed by copper salt, Chin. Chem. Lett. 26(2015) 969-972;(c) Q. Cai, M.C. Liu, B.M. Mao, et al., Direct one-pot synthesis of zolimidine pharmaceutical drug and imidazo[1,2-a]pyridine derivatives via I2/CuO-promoted tandem strategy, Chin. Chem. Lett. 26(2015) 881-884.
-
[11]
[11] Z. Shi, C. Zhang, C. Tang, et al., Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant, Chem. Soc. Rev. 41(2012) 3381-3430.
-
[12]
[12] W. Wu, H. Jiang, Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen, Acc. Chem. Res. 45(2012) 1736-1748.
-
[13]
[13] R.J. Altenbach, R.M. Adair, B.M. Bettencourt, et al., Structure-activity studies on a series of a 2-aminopyridimidine-containing histamine H4 receptor ligands, J. Med. Chem. 51(2008) 6571-6580.
-
[14]
[14] L. Li, Y.L. Zhao, Q. Wang, Base-promoted oxidative C-H functionalization of α-amino carbonyl compounds under mild metal-free conditions:using molecular oxygen as the oxidant, Org. Lett. 17(2015) 370-373.
-
[1]
-
-
-
[1]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[2]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[3]
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
-
[4]
Wen-Tao Ouyang , Jun Jiang , Yan-Fang Jiang , Ting Li , Yuan-Yuan Liu , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038
-
[5]
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
-
[6]
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
-
[7]
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
-
[8]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[9]
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
-
[10]
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
-
[11]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[12]
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
-
[13]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[14]
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
-
[15]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[16]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[17]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[18]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[19]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[20]
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(657)
- HTML views(15)