Citation: Lin-Li Hu, Wen Xue, Jun Yin. Construction of a hetero pseudo[2]rota[2]catenane[J]. Chinese Chemical Letters, ;2016, 27(01): 155-158. doi: 10.1016/j.cclet.2015.09.010 shu

Construction of a hetero pseudo[2]rota[2]catenane

  • Corresponding author: Jun Yin, 
  • Received Date: 20 July 2015
    Available Online: 19 August 2015

    Fund Project: The authors acknowledge financial support from National Natural Science Foundation of China(No. 21402057) (No. 21402057)

  • A novel ammonium template containing three ammonium sites was synthesized. Two ammoniums located on the linear component served as template for cucurbit[6]uril to form the CB-based pseudo[2]rotacane while another one located on the macrocyclic component played a role of template for clipping reaction. As a result of a "threading-followed-by-clipping" approach, a novel hetero pseudo[2]rota[2]catenane was successfully constructed.
  • 加载中
    1. [1]

      [1] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines:Concepts and Perspectives for the Nanoworld, 2nd ed., Wiley-VCH, Weinheim, 2008.

    2. [2]

      [2] A.R. Pease, J.O. Jeppesen, J.F. Stoddart, et al., Switching devices based on interlocked molecules, Acc. Chem. Res. 34(2001) 433-444.

    3. [3]

      [3] S. Saha, J.F. Stoddart, Photo-driven molecular devices, Chem. Soc. Rev. 36(2007) 77-92.

    4. [4]

      [4] A.C. Fahrenbach, S.C. Warren, J.T. Incorvati, et al., Organic switches for surfaces and devices, Adv. Mater. 25(2013) 331-348.

    5. [5]

      [5] J.A. Faiz, V. Heitz, J.-P. Sauvage, Design and synthesis of porphyrin-containing catenanes and rotaxanes, Chem. Soc. Rev. 38(2009) 422-442.

    6. [6]

      [6] J.E. Beves, B.A. Blight, C.J. Campbell, Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links, Angew. Chem. Int. Ed. 50(2011) 9260-9327.

    7. [7]

      [7] A. Coskun, M. Banaszak, R.D. Astumian, et al., Great expectations:can artificial molecular machines deliver on their promise, Chem. Soc. Rev. 41(2012) 19-30.

    8. [8]

      [8] V.N. Vukotic, S.J. Loeb, Coordination polymers containing rotaxane linkers, Chem. Soc. Rev. 41(2012) 5896-5906.

    9. [9]

      [9] D.H. Qu, H. Tian, Novel and efficient templates for assembly of rotaxanes and catenanes, Chem. Sci. 2(2011) 1011-1015.

    10. [10]

      [10] S. Saha, K.C.F. Leung, T.D. Nguyen, et al., Nanovalves, Adv. Funct. Mater. 17(2007) 685-693.

    11. [11]

      [11] V. Sindelar, S. Silvi, S.E. Parker, et al., Proton and electron transfer control of the position of cucurbit[n]uril wheels in pseudorotaxanes, Adv. Funct. Mater. 17(2007) 694-701.

    12. [12]

      [12] I. Willner, B. Basnar, B. Willner, From molecular machines to microscale motility of objects:application as "smart materials", sensors, and nanodevices, Adv. Funct. Mater. 17(2007) 702-717.

    13. [13]

      [13] Y. Chen, Y. Liu, Cyclodextrin-based bioactive supramolecular assemblies, Chem. Soc. Rev. 39(2010) 495-505.

    14. [14]

      [14] J. Zhang, B. Han, Y. Zhao, et al., CO2 capture by hydrocarbon surfactant liquids, Chem. Commun. 47(2011) 1033-1035.

    15. [15]

      [15] X. Yan, F. Wang, B. Zheng, et al., Stimuli-responsive supramolecular polymeric materials, Chem. Soc. Rev. 41(2012) 6042-6065.

    16. [16]

      [16] J.M. Yi, X.L. Ni, X. Xiao, et al., Complexation of sym-bis(benzimidazole)-2,20-ethylene salts with cucurbit[6] uril derivatives:a potential axle molecule for pseudorotaxanes, Chin. Chem. Lett. 24(2013) 362-366.

    17. [17]

      [17] Y. Han, Y. Jiang, C.F. Chen, Solid state self-assembly of triptycene-based catechol derivatives by multiple O-H…O hydrogen bonds, Chin. Chem. Lett. 24(2013) 475-478.

    18. [18]

      [18] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24(2013) 545-552.

    19. [19]

      [19] H. Wang, Z.J. Zhang, H.Y. Zhang, et al., Synthesis of a bistable[3] rotaxane and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem. Lett. 24(2013) 563-567.

    20. [20]

      [20] S. Sun, J.B. Shi, Y.P. Dong, et al., A pillar[5] arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions, Chin. Chem. Lett. 24(2013) 987-992.

    21. [21]

      [21] D.B. Amabilino, P.R. Ashton, J.A. Bravo, et al., Template-directed synthesis of a rotacatenane, Eur. J. Org. Chem.(1999) 1295-1302.

    22. [22]

      [22] G. Barin, A. Coskun, D.C. Friedman, et al., A multistate switchable[3] rotacatenane, Chem. Eur. J. 17(2011) 213-222.

    23. [23]

      [23] R.S. Forgan, J.J. Gassensmith, D.B. Cordes, et al., Self-assembly of a[2] pseudorota[3] catenane in water, J. Am. Chem. Soc. 134(2012) 17007-17010.

    24. [24]

      [24] R. Hayashi, K. Wakatsuki, R. Yamasaki, et al., Synthesis of rotacatenanes by the combination of Cu-mediated threading reaction and the template method:the dual role of one ligand, Chem. Commun. 50(2014) 204-206.

    25. [25]

      [25] J. Yin, S. Dasgupta, J. Wu, Synthesis of[n]rotaxanes by template-directed clipping:the role of the dialkylammonium recognition sites, Org. Lett. 12(2010) 1712-1715.

    26. [26]

      [26] Z. Li, W. Liu, J. Wu, et al., Synthesis of[2] catenanes by template-directed clipping approach, J. Org. Chem. 77(2012) 7129-7135.

    27. [27]

      [27] Z. Li, G. Liu, W. Xue, et al., Construction of hetero[n]rotaxanes by use of polyfunctional rotaxane frameworks, J. Org. Chem. 78(2013) 11560-11570.

    28. [28]

      [28] G. Liu, Z. Li, D. Wu, et al., Dendritic[2] rotaxanes:synthesis, characterization, and properties, J. Org. Chem. 79(2014) 643-652.

    29. [29]

      [29] Z. Li, F. Hu, G. Liu, et al., Photo-responsive[2] catenanes:synthesis and properties, Org. Biomol. Chem. 12(2014) 7702-7711.

    30. [30]

      [30] F. Hu, J. Huang, J. Cao, et al., Dithienylethene-based rotaxanes:synthesis, characterization and properties, Org. Biomol. Chem. 12(2014) 7712-7720.

    31. [31]

      [31] Z.Y. Li, W. Xue, G.X. Liu, et al., Synthesis and properties of template-promoted switchable dithienylethene-based macrocycles, Chin. Chem. Lett. 24(2013) 189-191.

    32. [32]

      [32] G. Liu, D. Wu, J. Liang, et al., Tetraphenylethene modified[n]rotaxanes:synthesis, characterization and aggregation induced emission behavior, Org. Biomol. Chem. 13(2015) 4090-4100.

    33. [33]

      [33] Z. Li, X. Han, H. Chen, et al., Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments, Org. Biomol. Chem. 13(2015) 7313-7322.

    34. [34]

      [34] X. Han, F. Hu, H. Ge, et al., The application of template-directed clipping approach in constructing mechanically interlocked molecules based on N-hetero crown ethers, Prog. Chem. 27(2015) 675-686.

    35. [35]

      [35] X. Han, M. Cao, Z. Xu, et al., Aggregation-induced emission behavior of pHcontrolled molecular shuttle based on tetraphenylethene moiety, Org. Biomol. Chem. 13(2015) 9767-9774.

    36. [36]

      [36] W. Xue, Z. Li, G. Liu, et al., Construction of rotacatenanes using rotaxane and catenane frameworks, Org. Biomol. Chem. 12(2014) 4862-4871.

    37. [37]

      [37] K. Kim, Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies, Chem. Soc. Rev. 31(2002) 96-107.

    38. [38]

      [38] J. Yin, C. Chi, J. Wu, Efficient preparation of separable pseudo[n]rotaxanes by selective threading of oligoalkylammonium salts with cucurbit[7] uril, Chem. Eur. J. 15(2009) 6050-6057.

    39. [39]

      [39] M. Cao, F. Hu, X. Han, et al., Aggregation control of hemicyanine fluorescent dye by using of cucurbit[7] uril and pillar[6] arene, Chin. J. Chem. 33(2015) 351-355.

    40. [40]

      [40] J. Yin, C. Chi, J. Wu, Efficient synthesis of a hetero[4] rotaxane by a "threadingstoppering-followed-by-clipping" approach, Org. Biomol. Chem. 8(2010) 2594-2599.

  • 加载中
    1. [1]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    2. [2]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    3. [3]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    4. [4]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    5. [5]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    8. [8]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    13. [13]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    14. [14]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    15. [15]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    18. [18]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

Metrics
  • PDF Downloads(0)
  • Abstract views(610)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return