Citation:
De-Lin Chen, Feng-Peng Wang, Xiao-Yu Liu. A convergent approach to the tetracyclic core of atisane diterpenes[J]. Chinese Chemical Letters,
;2016, 27(01): 59-62.
doi:
10.1016/j.cclet.2015.09.005
-
Atisane diterpenes are biologically interesting natural products. We report here a convergent approach to construct the tetracyclic core of the atisane skeleton. The two segments were assembled through a Wittig reaction, while an intramolecular Aldol condensation served as the key step to furnish the tetracyclic skeleton.
-
Keywords:
- Atisane diterpenes,
- Wittig,
- Intramolecular Aldol,
- Tetracycle
-
-
-
[1]
[1] J.D. Connolly, R.A. Hill, Dictionary of Terpenoids, 1st. ed, Chapman and Hall, London, 1991.
-
[2]
[2] J.R. Hanson, Diterpenoids, Nat. Prod. Rep. 17(2000) 165-174.
-
[3]
[3] L.A. Mitscher, G.S.R. Rao, T. Veysoglu, S. Drake, T. Haas, Isolation and identification of trachyloban-19-oic and(-)-kaur-16-en-19-oic acids as antimicrobial agents from the prairie sunflower, helianthus annuus, J. Nat. Prod. 46(1983) 745-746.
-
[4]
[4] S.Y. Ryu, J.W. Ahn, Y.N. Han, B.H. Han, S.H. Kim, In vitro antitumor activity of diterpenes from Aralia cordata, Arch. Pharm. Res. 19(1996) 77-78.
-
[5]
[5] W.M. Daniewski, P. Skibicki, E. Bloszyk, M. Budesinsky, M. Holub, Constituents of Helianthus mollis lam. and their antifeedant activity, Polish J. Chem. 67(1993) 1255-1259.
-
[6]
[6] M. Toyota, M. Yokota, M. Ihara, Construction of bicyclo[2.2.2] octane ring system via homoallyl-homoallyl radical rearrangement, Tetrahedron Lett. 40(1999) 1551-1554.
-
[7]
[7] M. Ihara, M. Toyota, K. Fukuyama, T. Kametani, Stereocontrolled construction of a spiro fused bicyclo[2.2.2] Octane ring system by the intramolecular double michael reaction, Tetrahedron Lett. 25(1984) 2167-2170.
-
[8]
[8] M. Ihara, M. Toyota, K. Fukuyama, T. Kametani, Intramolecular double Michael reaction. Part Ⅱ. Synthesis of isoatisirene type compound, Tetrahedron Lett. 25(1984) 3235-3238.
-
[9]
[9] M. Ihara, M. Toyota, K. Fukuyama, T. Kametani, Intramolecular double Michael reaction ⅡI stereoselective chiral synthesis of atisiran-15-one, Tetrahedron Lett. 26(1985) 1537-1540.
-
[10]
[10] M. Ihara, M. Toyota, K. Fukuyama, T. Kametani, An enantioselective total synthesis of(+)-atisirene by intramolecular double Michael reaction, J. Chem. Soc. Perkin Trans. 1(1986) 2151-2161.
-
[11]
[11] M. Toyota, T. Wada, K. Fukuyama, M. Ihara, Total synthesis of(±)-methyl atis-16-en-19-oate via homoallyl-homoallyl radical rearrangement, J. Am. Chem. Soc. 120(1998) 4916-4925.
-
[12]
[12] M. Toyota, T. Wada, M. Ihara, Total syntheses of(-)-methyl atis-16-en-19-oate,(-)-methyl kaur-16-en-19-oate, and(-)-methyl trachyloban-19-oate by a combination of palladium-catalyzed cycloalkenylation and homoallyl-homoallyl radical rearrangement, J. Org. Chem. 65(2000) 4565-4570.
-
[13]
[13] E.C. Cherney, J.M. Lopchuk, J.C. Green, P.S. Baran, A unified approach to ent-atisane diterpenes and related alkaloids:synthesis of(-)-methyl atisenoate,(-)-isoatisine, and the hetidine skeleton, J. Am. Chem. Soc. 136(2014) 12592-12595.
-
[14]
[14] M. Toyota, M. Yokota, M. Ihara, First total synthesis of(±)-methyl gummiferolate using a homoallyl-homoallyl radical rearrangement reaction, Org. Lett. 1(1999) 1627-1629.
-
[15]
[15] M. Toyota, M. Yokota, M. Ihara, Remarkable control of radical cyclization processes of cyclic enyne:total syntheses of(±)-methyl gummiferolate,(±)-methyl 7β-hydroxykaurenoate, and(±)-methyl 7-oxokaurenoate and formal synthesis of(±)-gibberellin A12 from a common synthetic precursor, J. Am. Chem. Soc. 123(2001) 1856-1861.
-
[16]
[16] M. Toyota, T. Asano, M. Ihara, Total synthesis of serofendic acids A and B employing tin-free homoallyl-homoallyl radicalrearrangement, Org. Lett.7(2005) 3929-3932.
-
[17]
[17] D.L. Chen, F.P. Wang, Efficient synthesis of the C/D rings of atisine-type C20-diterpenoid alkaloids, Chin. Chem. Lett. 23(2012) 1378-1380.
-
[18]
[18] F.A.J. Kerdesky, S.P. Schmidt, J.H. Holms, et al., Synthesis and 5-lipoxygenase inhibitory activity of 5-hydroperoxy-68, 11, 14-eicosatetraenoic acid analogs, J. Med. Chem. 30(1987) 1177-1186.
-
[19]
[19] K.W. Tsao, B. Devendar, C.C. Liao, Ring rearrangement metathesis of 2-allylbicyclo[2.2.2] octenes:a short entry to cis-hydrindenols from 2-methoxyphenols, Tetrahedron Lett. 54(2013) 3055-3059.
-
[20]
[20] V. Van Rheenen, Copper-catalyzed oxygenation of branched aldehydes-an efficient ketone synthesis, Tetrahedron Lett. 10(1969) 985-988.
-
[21]
[21] J.A. Zallkowski, K.E. Gilbert, W.T. Borden, Oxidation of 7-(hydroxymethyl)bicyclo[3.3.1] nonan-3-ol. Convenient synthesis of bicyclo[3.3.1] nonane-3, 7-dione, J. Org. Chem. 45(1980) 346-347.
-
[22]
[22] H.N. Sun, C. Yang, F. Gao, Z. Li, W.J. Xia, Oxidative C-C bond cleavage of aldehydes via visible-light photoredox catalysis, Org. Lett. 15(2013) 624-627.
-
[1]
-
-
-
[1]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[2]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[3]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(686)
- HTML views(5)