Citation: Mohammad Ali Kamyabi, Fatemeh Soleymani-Bonoti, Saeed Zakavi. Voltammetric determination of stability constants of lead complexes with diallyl disulfide, dimethyl disulfide, and diallyl sulfide[J]. Chinese Chemical Letters, ;2016, 27(01): 71-76. doi: 10.1016/j.cclet.2015.09.001 shu

Voltammetric determination of stability constants of lead complexes with diallyl disulfide, dimethyl disulfide, and diallyl sulfide

  • Corresponding author: Mohammad Ali Kamyabi,  Saeed Zakavi, 
  • Received Date: 27 January 2015
    Available Online: 2 June 2015

    Fund Project: This work was supported in part by the Iranian National Science Foundation(INSF) under grant No. 90001029. (INSF)

  • The complexation of Pb2+ by diallyl disulfide(DADS), dimethyl disulfide(DMDS) and diallyl sulfide(DAS) has been studied by differential pulse voltammetry. Stability constants,(log β), of the 1:1(PbL) and 1:2(PbL2) complexes, where L=ligand, were found to be in the range of ca. 3.8-4.2 and 9.4-10.2, respectively. Complex formation is accompanied with a significant decrease in the peak current and the shift of the Pb2+/Pb half-wave potential to a higher one upon the addition of the sulfur containing ligands(L). The formation of 1:1 and 1:2 complexes, i.e., PbL2+and PbL22+ was observed in the case of the three ligands. The consecutive formation constants of labile lead complexes with DADS, DMDS, and DAS were determined at 298 K by the method of DeFord and Hume. Apparently due to the large size of the lead ion, steric hindrance caused by the greater steric bulk of DADS compared to that of DMDS have little or no effects on the formation constants, so that very similar values were obtained in the case of the two ligands. Also, the possible participation of C=C double bonds in coordination with the metal center in the case of DADS appears to compensate for the steric effects caused by the larger size of this ligand. In agreement with the Jorgensen principle of symbiosis, the second formation constants were found to be approximately six orders of magnitude greater than the first ones.
  • 加载中
    1. [1]

      [1] A.K. De, Environmental Chemistry, 3rd ed., New Age International(P) Limited, New Delhi, 1996p. 263.

    2. [2]

      [2] Y.P. Pang, K. Xu, T.M. Kollmeyer, et al., Discovery of a new inhibitor lead of adenovirus proteinase:steps toward selective, irreversible inhibitors of cysteine proteinases, FEBS Lett. 502(2001) 93-97.

    3. [3]

      [3] J.O. Nriagu, The rise and fall of leaded gasoline, Sci. Total Environ. 92(1990) 13-28.

    4. [4]

      [4] M.J. Quinn, J.C. Sherlock, The correspondence between U.K. 'action levels' for lead in blood and in water, Food Addit. Contam. 7(1990) 387-424.

    5. [5]

      [5] F.T. Li, H. Yang, Y. Zhao, R. Xu, Novel modified pectin for heavy metal adsorption, Chin. Chem. Lett. 23(2012) 105-108.

    6. [6]

      [6] V.P. Mahida, M.P. Patel, Synthesis of new superabsorbent poly(NIPAAm/AA/Nallylisatin) nanohydrogel for effective removal of As(V) and Cd(Ⅱ) toxic metal ions, Chin. Chem. Lett. 25(2014) 601-604.

    7. [7]

      [7] Y. Meng, J.N. Wang, L. Xu, A.M. Li, Fast removal of Pb2+ from water using new chelating fiber modified with acylamino and amino groups, Chin. Chem. Lett. 23(2012) 496-499.

    8. [8]

      [8] C. Zhang, Q. Li, M. Zhang, N. Zhang, M. Li, Effects of rare earth elements on growth and metabolism of medicinal plants, Acta Pharm. Sin. B 3(2013) 20-24.

    9. [9]

      [9] M.A. Taggart, J. Figuerola, A.J. Green, et al., After the Aznalcóllar mine spill:arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species, Environ. Res. 100(2006) 349-361.

    10. [10]

      [10] J.M. Pearce, Burton's line in lead poisoning, Eur. J. Neurol. 57(2007) 118-119.

    11. [11]

      [11] E.K. Silbergeld, Preventing lead poisoning in children, Annu. Rev. Public Health 18(1997) 187-210.

    12. [12]

      [12] W. Aicr, Vegetables and fruits, in:World Cancer Research Fund, American Institute for Cancer Research(Eds.), Food, Nutrition and the Prevention of Cancer:A Global Perspective, American Institute for Cancer Research, Washington, DC, 1997, pp. 436-446.

    13. [13]

      [13] E. Block, The chemistry of garlic and onions, Sci. Am. 252(1985) 114-119.

    14. [14]

      [14] Z. Wei, B.H.S. Lau, Garlic inhibits free radical generation and augments antioxidant enzyme activity in vascular endothelial cells, Nutr. Res. 18(1998) 61-70.

    15. [15]

      [15] S.G. Santhosha, S.N. PrakashJamuna, Prabhavathi, Bioactive components of garlic and their physiological role in health maintenance:a review, Food Biosci. 3(2013) 59-74.

    16. [16]

      [16] Y.A. Kim, D. Xiao, H. Xiao, et al., Mitochondria-mediated apoptosis by diallyltrisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak, Mol. Cancer Ther. 61(2007) 599-609.

    17. [17]

      [17] X. Wu, F. Kassie, V. Mersch-Sundermann, Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds, Mutat. Res. 589(2005) 81-102.

    18. [18]

      [18](a) P. Canizares, I. Gracia, L.A. Gomez, et al., Thermal degradation of allicin in garlic extracts and its implication on the inhibition of the in-vitro growth of Helicobacter pylori, Biotechnol. Progr. 20(2004) 32-37;(b) J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry:Principles of Structure and Reactivity, 4th ed., Harper Collins College Publishers, New York, 1993.

    19. [19]

      [19] W. Paik, S. Eu, K. Lee, S. Chon, M. Kim, Electrochemical reactions in adsorption of organosulfur molecules on gold and silver:potential dependent adsorption, Langmuir 16(2000) 10198-10205.

    20. [20]

      [20].J.S. Magyar, T.C. Weng, C.M. Stern, et al., Reexamination of lead(Ⅱ) coordination preferences in sulfur-rich sites:implications for a critical mechanism of lead poisoning, J. Am. Chem. Soc. 127(2005) 9495-9505.

    21. [21]

      [21] G. Branic, M. Metiko-Hukovi, D. Omanovi, Voltammetric determination of stability constants of lead complexes with vitamin C, Croat. Chem. Acta 79(2006) 77-83.

    22. [22]

      [22] Y. Wu, N.B. Li, H.Q. Luo, Electrochemical determination of Pb(Ⅱ) at a gold electrode modified with a self-assembled monolayer of 2,5-dimercapto-1,3,4-thiadiazole, Microchim. Acta 160(2008) 185-190.

    23. [23]

      [23] G.H. Rounaghi, A. SarafrazYazdi, Z. Monsef, A polarographic study of Tl+, Pb2+ and Cd2+ complexes with dicyclohexano-18-crown-6 in some binary mixed solvents, J. Incl. Phenom. Macro. Chem. 43(2002) 231-237.

    24. [24]

      [24] B.H. Cruz, J.M. Díaz-Cruz, M.S. Díaz-Cruz, et al., Differential pulse polarographic study of the Pb(Ⅱ) complexation by glutathione, J. Electroanal. Chem. 516(2001) 110-118.

    25. [25]

      [25] J. Buffle, Complexation Reactions in Aquatic Systems:An Analytical Approach, Ellis Horwood, Chichester, 1988, pp. 467-562.

    26. [26]

      [26] P.T. Kissinger, W.R. Heinemann, Laboratory Techniques in Electroanalytical Chemistry, 2nd ed., Marcel Dekker, New York, 1996.

    27. [27]

      [27] A.J. Bard, L.R. Faulkner, Electrochemical Methods:Fundamentals and Applications, Wiley, New York, 1980.

    28. [28]

      [28].J.F Rusling, Analysis of chemical data by computer modeling, Crit. Rev. Anal. Chem. 21(1989) 49-81.

    29. [29]

      [29] M.G. Polissiou, A.C. Kimbaris, N.G. Siatis, et al., Quantitative analysis of garlic(Allium sativum) oil unsaturated acyclic components using FT-Raman spectroscopy, Food Chem. 94(2006) 287-295.

    30. [30]

      [30] A.R. Heiskanen, C.F. Spégel, N. Kostesha, T. Ruzgas, J. Émneus, Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy, Langmuir 24(2008) 9066-9073.

    31. [31]

      [31] C. Spégel, A. Heiskanen, J. Acklid, et al., Chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes, Electroanalysis 19(2-3)(2007) 263-271.

    32. [32]

      [32] E. Kirowa-Eisner, Y. Bonfil, Brand, trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode, Anal. Chim. Acta 424(2000) 65-76.

    33. [33]

      [33] M.S. Díaz-Cruz, J.M. Díaz-Cruz, J. Mendieta, R. Tauler, M. Esteban, Soft-and hardmodeling approaches for the determination of stability constants of metal-peptide systems by voltammetry, Anal. Biochem. 279(2000) 189-201.

    34. [34]

      [34] M.M. Jones, H.R. Clark, The hard and soft acid-base principle and metal ion assisted ligand substitution processes, J. Inorg. Nucl. Chem. 33(1971) 413-419.

    35. [35]

      [35] C. Elschenbroich, Organometallics, 3rd ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.

    36. [36]

      [36] T. Müller, N. Auner, C. Bauch, M. Bolte, Unique coordination of two C=C double bonds to an electron-deficient lead center, Chem. Eur. J. 9(2003) 1746-1749.

    37. [37]

      [37] G.R. Sajitha, R. Jose, A. Andrews, et al., Garlic oil and vitamin E prevent the adverse effects of lead acetate and ethanol separately as well as in combination in the drinking water of rats, J. Clin. Biochem. 25(2010) 280-288.

  • 加载中
    1. [1]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    2. [2]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    3. [3]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    4. [4]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    5. [5]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    6. [6]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    7. [7]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    8. [8]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    9. [9]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    10. [10]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    11. [11]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    12. [12]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    13. [13]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    14. [14]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    15. [15]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    18. [18]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    19. [19]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    20. [20]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

Metrics
  • PDF Downloads(0)
  • Abstract views(734)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return