Citation: Xiu-Yu Sun, Peng-Zhang Li, Bing Ai, Yue-Bo Wang. Surface modification of MCM-41 and its application in DNA adsorption[J]. Chinese Chemical Letters, ;2016, 27(01): 139-144. doi: 10.1016/j.cclet.2015.08.008 shu

Surface modification of MCM-41 and its application in DNA adsorption

  • Corresponding author: Yue-Bo Wang, 
  • Received Date: 8 June 2015
    Available Online: 15 July 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China(No. 21205070) (No. 21205070)

  • Three types of MCM-41 absorbents, namely, Al3+-MCM-41, La3+-MCM-41, and Zn2+-MCM-41, were prepared through amine grafting, phosphonate modification, and metal ion chelation and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and N2 adsorption-desorption analysis. Results revealed that functionalized MCM-41 maintains the original structure of the molecular sieve and that the pore diameter and surface area are reduced compared with those of pure MCM-41. The adsorption behavior of DNA molecules on the surface of the modified molecular sieves was discussed according to the hard-soft acid-base(HSAB) principle. Experimental results showed that DNA purification could be effectively carried out on functionalized MCM-41 and that DNA is easily released by 3-4 mol L-1 NaCl solution. This study could be used as a general platform for future work on DNA adsorption and enrichment.
  • 加载中
    1. [1]

      [1] P. Chomczynski, N. Sacchi, The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction:twenty-something years on, Nat. Protoc. 1(2006) 581-585.

    2. [2]

      [2] H.K. Choi, J.H. Chang, I.H. Ko, et al., Electrostatic interaction effect for human DNA separation with functionalized mesoporous silicas, J. Solid State Chem. 184(2011) 805-810.

    3. [3]

      [3] P.E. Vandeventer, J. Mejia, A. Nadim, M.S. Johal, A. Niemz, DNA Adsorption to and elution from silica surfaces:influence of amino acid buffers, J. Phys. Chem. B 117(2013) 10742-10749.

    4. [4]

      [4] X.X. Huang, Z.M. Tao, J.C. Praskavich Jr., et al., Dendritic silica nanomaterials(KCC-1) with fibrous pore structure possess high DNA Adsorption capacity and effectively deliver genes in vitro, Langmuir 30(2014) 10886-10898.

    5. [5]

      [5] H. Yang, K. Zheng, Z.M. Zhang, et al., Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane, J. Colloid Interface Sci. 369(2012) 317-322.

    6. [6]

      [6] N.M. Adams, H. Bordelon, K.K.A. Wang, et al., Comparison of three magnetic bead surface functionalities for RNA extraction and detection, ACS Appl. Mater. Interfaces 7(2015) 6062-6069.

    7. [7]

      [7] W.W. Hu, Y.J. Chen, R.C. Ruaan, et al., The regulation of DNA adsorption and release through chitosan multilayers, Carbohydr. Polym. 99(2014) 394-402.

    8. [8]

      [8] N. Sun, C.L. Deng, Y. Liu, et al., Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles:application to viral nucleic acid extraction from serum, J. Chromatogr. A 1325(2014) 31-39.

    9. [9]

      [9] R. Vathyanm, E. Wondimu, S. Das, et al., Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods, J. Phys. Chem. C 115(2011) 13135-13150.

    10. [10]

      [10] M. Moritz, Solvent optimization for niacinamide adsorption on organo-functionalized SBA-15 mesoporous silica, Appl. Surf. Sci. 283(2013) 537-545.

    11. [11]

      [11] J.L. Steinbacher, C.C. Landry, Adsorption and release of siRNA from porous silica, Langmuir 30(2014) 4396-4405.

    12. [12]

      [12] P.E. Vandeventer, J.S. Lin, T.J. Zwang, et al., Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions, J. Phys. Chem. B 116(2012) 5661-5670.

    13. [13]

      [13] S. Jiang, J.Q. Zhuang, C. Wang, J. Li, W.S. Yang, Highly efficient adsorption of DNA on Fe3+-iminodiacetic acid modified silica particles, Colloids Surf. A:Physicochem. Eng. Aspect. 409(2012) 143-148.

    14. [14]

      [14] X. Li, J.X. Zhang, H.C. Gu, Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution, Langmuir 28(2012) 2827-2834.

    15. [15]

      [15] T. Geng, N. Bao, O.Z. Gall, C. Lu, Modulating DNA adsorption on silica beads using an electrical switch, Chem. Commun.(2009) 800-802.

    16. [16]

      [16] J.D. Zhang, Z.M. Shen, Z.J. Mei, S.P. Li, W.H. Wang, Removal of phosphate by Fecoordinated amino-functionalized 3D mesoporous silicates hybrid materials, J. Environ. Sci. 23(2011) 199-205.

    17. [17]

      [17] R.H. Huang, J. Liu, L.S. Li, et al., Fe/MCM-41 as a promising heterogeneous catalyst for ozonation of p-chlorobenzoic acid in aqueous solution, Chin. Chem. Lett. 22(2011) 683-686.

    18. [18]

      [18] J.H. Liu, D. Liang, B.B. Fan, R.F. Li, H. Chen, Enantioselective hydrogenation of acetophenone by(1S, 2S)-DPEN-Ru(Ⅱ)Cl2(PPh3)2 encapsulated in Al-MCM-41, Chin. Chem. Lett. 21(2010) 802-806.

    19. [19]

      [19] L.H. Hu, H.J. Zhou, Y.H. Li, et al., Profiling of endogenous serum phosphorylated peptides by titanium(IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection, Anal. Chem. 81(2009) 94-104.

    20. [20]

      [20] Z.Y. Ma, Y.P. Guan, H.Z. Liu, Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption, J. Magn. Magn. Mater. 301(2006) 469-477.

    21. [21]

      [21] Y.J. Jiang, Q.M. Gao, H.G. Yu, Y.R. Chen, F. Deng, Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials, Microporous Mesoporous Mater. 103(2007) 316-324.

    22. [22]

      [22] M. Puanngam, F. Unob, Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(Ⅱ) ions, J. Hazard. Mater. 154(2008) 578-587.

    23. [23]

      [23] P. Selvam, S.K. Bhatia, C.G. Sonwane, Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves, Ind. Eng. Chem. Res. 40(2001) 3237-3261.

    24. [24]

      [24] X.G. Wang, S.K. Kyle, Lin, C.C. Jerry, S. Chan, Cheng, Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials, J. Phys. Chem. B 109(2005) 1763-1769.

    25. [25]

      [25] L. Bois, A. Bonhommé, A. Ribes, et al., Functionalized silica for heavy metal ions adsorption, Colloids Surf. A:Physicochem. Eng. Asp. 221(2003) 221-230.

    26. [26]

      [26] D.H. Everett, Manual of symbols and terminology for physicochemical quantities and units, appendix Ⅱ:definitions, terminology and symbols in colloid and surface chemistry, Pure Appl. Chem. 31(1972) 577-638.

    27. [27]

      [27] X.X. He, K.M. Wang, W.H. Tan, et al., Bioconjugated nanoparticles for DNA protection from cleavage, J. Am. Chem. Soc. 125(2003) 7168-7169.

    28. [28]

      [28] M. Fujiwara, F. Yamamoto, K. Okamoto, K. Shiokawa, R. Nomura, Adsorption of duplex DNA on mesoporous silicas:possibility of inclusion of DNA into their mesopores, Anal. Chem. 77(2005) 8138-8145.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    4. [4]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    5. [5]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    6. [6]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    7. [7]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    8. [8]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    9. [9]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    10. [10]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    11. [11]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    12. [12]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    13. [13]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    14. [14]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    18. [18]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    19. [19]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    20. [20]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return