Citation:
Li Zhang, Wen-Huan Dong, Ning-Zhao Shang, Cheng Feng, Shu-Tao Gao, Chun Wang. N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction[J]. Chinese Chemical Letters,
;2016, 27(01): 149-154.
doi:
10.1016/j.cclet.2015.08.007
-
A new catalyst, Pd particles supported on the N-doped porous carbon(PC) derived from Zn-based metal-organic frameworks(zeolitic imidazolate framework:ZIF-8), was successfully prepared for the first time. The as-prepared catalyst was designated as N-doped PC-Pd, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscope, N2 adsorption and inductively coupled plasma atomic emission spectroscopy. The N-doped PC-Pd composite exhibited high catalytic activity toward the Suzuki-Miyaura cross-coupling reactions. The yields of the products were in the range of 90%-99%. The catalyst could be readily recycled and reused at least 6 consecutive cycles without a significant loss of its catalytic activity.
-
-
-
[1]
[1] M.B. Thathagar, J. Beckers, G. Rothenberg, Copper-catalyzed suzuki cross-coupling using mixed nanocluster catalysts, J. Am. Chem. Soc. 124(2002) 11858-11859.
-
[2]
[2] N.Z. Shang, C. Feng, H.Y. Zhang, et al., Suzuki-Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles, Catal. Commun. 40(2013) 111-115.
-
[3]
[3] Y.Y. Ma, X.B. Ma, Q. Wang, J.Q. Zhou, Homogenization of inorganic materialsupported palladium catalysts in Suzuki coupling reaction at room temperature, Catal. Sci. Technol. 2(2012) 1879.
-
[4]
[4] A.R. Siamaki, A.E.R.S. Khder, V. Abdelsayed, M.S. El-Shall, B.F. Gupton, Microwaveassisted synthesis of palladium nanoparticles supported on graphene:a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions, J. Catal. 279(2011) 1-11.
-
[5]
[5] M. Amini, A. Tarassoli, S. Yousefi, et al., Suzuki-Miyaura cross-coupling reactions in water using in situ generated palladium(Ⅱ)-phosphazane complexes, Chin. Chem. Lett. 25(2014) 166-168.
-
[6]
[6] H. Cheng, Q.Y. Wu, F. Han, G.F. Yang, Efficient synthesis of 4-substituted pyrazole via microwave-promoted Suzuki cross-coupling reaction, Chin. Chem. Lett. 25(2014) 705-709.
-
[7]
[7] C.M. Chen, L.Y. Wei, X.H. Guo, S.X. Guo, G. Yan, Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides, Fuel Process. Technol. 124(2014) 165-173.
-
[8]
[8] L.J. Wang, Q. Han, D.C. Li, et al., Comparisons of Pt catalysts supported on active carbon, carbon molecular sieve, carbon nanotubes and graphite for HI decomposition at different temperature, J. Hydrogen Energy 38(2013) 109-116.
-
[9]
[9] H. Veisi, R. Masti, D. Kordestani, M. Safaei, O. Sahin, Functionalization of fullerene(C60) with metformine to immobilized palladium as a novel heterogeneous and reusable nanocatalyst in the Suzuki-Miyaura coupling reaction at room temperature, J. Mol. Catal. A:Chem. 385(2014) 61-67.
-
[10]
[10] H. Veisi, A. Khazaei, M. Safaei, D. Kordestani, Synthesis of biguanide-functionalized single-walled carbon nanotubes(SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki-Miyaura coupling reaction, J. Mol. Catal. A:Chem. 382(2014) 106-113.
-
[11]
[11] J.F. Hu, Y.P. Wang, M. Han, et al., A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki-Miyaura reaction, Catal. Sci. Technol. 2(2012) 2332-2340.
-
[12]
[12] Q. Xu, J.K. Sun, Functional materials derived from open framework templates/precursors:synthesis and applications, Energy Environ. 7(2014) 2071-2100.
-
[13]
[13] M. Bakherad, S. Jajarmi, A dithizone-functionalized polystyrene resin-supported Pd(Ⅱ) complex as an effective catalyst for Suzuki, Heck, and copper-free Sonogashira reactions under aerobic conditions in water, J. Mol. Catal. A:Chem. 370(2013) 152-159.
-
[14]
[14] X. Xu, Y. Li, Y.T. Gong, et al., Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J. Am. Chem. Soc. 134(2012) 16987-16990.
-
[15]
[15] M. Li, X. Xu, Y. Gong, et al., Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds, Green Chem. 16(2014) 4371.
-
[16]
[16] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133(2011) 2362-2365.
-
[17]
[17] M. Hu, J. Reboul, S. Furukawa, et al., Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, J. Am. Chem. Soc. 134(2012) 2864-2867.
-
[18]
[18] L. Zhang, Z. Su, F. Jiang, et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nanoscale 6(2014) 6590-6602.
-
[19]
[19] X. Zhao, H. Zhao, T. Zhang, et al., One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction, J. Mater. Chem. A 2(2014) 11666.
-
[20]
[20] W. Chaikittisilp, M. Hu, H.J. Wang, et al., Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem. Commun. 48(2012) 7259-7261.
-
[21]
[21] X.L. Yan, X.J. Li, Z.F. Yan, S. Komarneni, Porous carbons prepared by direct carbonization of MOFs for supercapacitors, Appl. Surf. Sci. 308(2014) 306-310.
-
[22]
[22] F. Afsahi, H.V. Thang, S. Mikhailenko, S. Kaliaguine, Electrocatalyst synthesized from metal organic frameworks, J. Power Sources 239(2013) 415-423.
-
[23]
[23] W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials:synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A 1(2013) 14-19.
-
[24]
[24] H.L. Jiang, B. Liu, Y.Q. Lan, et al., From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc. 133(2011) 11854-11857.
-
[25]
[25] J. Kim, N.D. McNamara, T.H. Her, J.C. Hicks, Carbothermal reduction of Ti-modified IRMOF-3:an adaptable synthetic method to support catalytic nanoparticles on carbon, ACS Appl. Mater. Interfaces 5(2013) 11479-11487.
-
[26]
[26] G. Srinivas, V. Krungleviciute, Z.X. Guo, T. Yildirim, T. Yildirim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. 7(2014) 335-342.
-
[27]
[27] T. Ahnfeldt, N. Guillou, D. Gunzelmann, et al.,[Al4(OH)2(OCH3)4(H2Nbdc)3]·xH2O:a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick, Angew. Chem. Int. Ed. Engl. 48(2009) 5163-5166.
-
[28]
[28] Y.Y. Lu, W.W. Zhan, Y. He, et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties, ACS Appl. Mater. Interfaces 6(2014) 4186-4195.
-
[29]
[29] S.J. Yang, T. Kin, J.H. Im, et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity, Chem. Mater. 24(2012) 464-470.
-
[30]
[30] S.J. Yang, T. Kim, K. Lee, et al., Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity, Carbon 71(2014) 294-302.
-
[31]
[31] H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs:influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des. 13(2013) 4195-4199.
-
[32]
[32] N.Z. Shang, S.T. Gao, X. Zhou, et al. Palladium nanoparticles encapsulated inside the pores of a metal-organic framework as a highly active catalyst for carbon-carbon cross-coupling RSC Adv. 4(2014) 54487-54493.
-
[33]
[33] L. Zhang, C. Feng, S.T. Gao, Z. Wang, C. Wang, Palladium nanoparticles supported on metal organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction, Catal. Commun. 61(2015) 21-25.
-
[34]
[34] X. Liu, L. Zhou, Y. Zhao, et al., Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor, ACS Appl. Mater. Interfaces 5(2013) 10280-10287.
-
[35]
[35] S.Y. Lin, X. Yang, L.Y. Yang, R.X. Zhou, Three-way catalytic performance of Pd/Ce0.67Zr0.33O2-Al2O3 catalysts:role of the different Pd precursors, Appl. Surf. Sci. 327(2015) 335-343.
-
[36]
[36] A. Maksic, Z. Rakocevic, M. Smiljanic, M. Nenadovic, S. Strbac, Methanol oxidation on Pd/Pt(poly) in alkaline solution, J. Power Sources 273(2015) 724-734.
-
[37]
[37] E. Negro, A.H.A.M. Videla, V. Baglio, et al., Fe-N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells, Appl. Catal. B:Environ. 166-167(2015) 75-83.
-
[38]
[38] S.Z. Wu, Y.X. Yu, W.D. Zhang, Processing graphitic carbon nitride for improved photocatalytic activity, Mat. Sci. Semicon. Proc. 24(2014) 15-20.
-
[39]
[39] B. Liu, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130(2008) 5390-5391.
-
[40]
[40] M.R. Feyyaz Durap, M. Aydemir, S. Ö zkar, Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst, Appl. Catal. A:Gen. 382(2010) 339-344.
-
[1]
-
-
-
[1]
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
-
[2]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[3]
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
-
[4]
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
-
[5]
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
-
[6]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[7]
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
-
[8]
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
-
[9]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[10]
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
-
[11]
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
-
[12]
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
-
[13]
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
-
[14]
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
-
[15]
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
-
[16]
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
-
[17]
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
-
[18]
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
-
[19]
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
-
[20]
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(693)
- HTML views(6)