Citation: Li Zhang, Wen-Huan Dong, Ning-Zhao Shang, Cheng Feng, Shu-Tao Gao, Chun Wang. N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction[J]. Chinese Chemical Letters, ;2016, 27(01): 149-154. doi: 10.1016/j.cclet.2015.08.007 shu

N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction

  • Corresponding author: Shu-Tao Gao,  Chun Wang, 
  • Received Date: 25 May 2015
    Available Online: 16 July 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China(Nos. 31171698, 31471643) (Nos. 31171698, 31471643) the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities(No. LJRC009) (No. LJRC009) Natural Science Foundation of Hebei Province(No. B2015204003) (No. B2015204003)the Natural Science Foundation of Agricultural University of Hebei(Nos. LG201404, ZD201506). (Nos. LG201404, ZD201506)

  • A new catalyst, Pd particles supported on the N-doped porous carbon(PC) derived from Zn-based metal-organic frameworks(zeolitic imidazolate framework:ZIF-8), was successfully prepared for the first time. The as-prepared catalyst was designated as N-doped PC-Pd, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscope, N2 adsorption and inductively coupled plasma atomic emission spectroscopy. The N-doped PC-Pd composite exhibited high catalytic activity toward the Suzuki-Miyaura cross-coupling reactions. The yields of the products were in the range of 90%-99%. The catalyst could be readily recycled and reused at least 6 consecutive cycles without a significant loss of its catalytic activity.
  • 加载中
    1. [1]

      [1] M.B. Thathagar, J. Beckers, G. Rothenberg, Copper-catalyzed suzuki cross-coupling using mixed nanocluster catalysts, J. Am. Chem. Soc. 124(2002) 11858-11859.

    2. [2]

      [2] N.Z. Shang, C. Feng, H.Y. Zhang, et al., Suzuki-Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles, Catal. Commun. 40(2013) 111-115.

    3. [3]

      [3] Y.Y. Ma, X.B. Ma, Q. Wang, J.Q. Zhou, Homogenization of inorganic materialsupported palladium catalysts in Suzuki coupling reaction at room temperature, Catal. Sci. Technol. 2(2012) 1879.

    4. [4]

      [4] A.R. Siamaki, A.E.R.S. Khder, V. Abdelsayed, M.S. El-Shall, B.F. Gupton, Microwaveassisted synthesis of palladium nanoparticles supported on graphene:a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions, J. Catal. 279(2011) 1-11.

    5. [5]

      [5] M. Amini, A. Tarassoli, S. Yousefi, et al., Suzuki-Miyaura cross-coupling reactions in water using in situ generated palladium(Ⅱ)-phosphazane complexes, Chin. Chem. Lett. 25(2014) 166-168.

    6. [6]

      [6] H. Cheng, Q.Y. Wu, F. Han, G.F. Yang, Efficient synthesis of 4-substituted pyrazole via microwave-promoted Suzuki cross-coupling reaction, Chin. Chem. Lett. 25(2014) 705-709.

    7. [7]

      [7] C.M. Chen, L.Y. Wei, X.H. Guo, S.X. Guo, G. Yan, Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides, Fuel Process. Technol. 124(2014) 165-173.

    8. [8]

      [8] L.J. Wang, Q. Han, D.C. Li, et al., Comparisons of Pt catalysts supported on active carbon, carbon molecular sieve, carbon nanotubes and graphite for HI decomposition at different temperature, J. Hydrogen Energy 38(2013) 109-116.

    9. [9]

      [9] H. Veisi, R. Masti, D. Kordestani, M. Safaei, O. Sahin, Functionalization of fullerene(C60) with metformine to immobilized palladium as a novel heterogeneous and reusable nanocatalyst in the Suzuki-Miyaura coupling reaction at room temperature, J. Mol. Catal. A:Chem. 385(2014) 61-67.

    10. [10]

      [10] H. Veisi, A. Khazaei, M. Safaei, D. Kordestani, Synthesis of biguanide-functionalized single-walled carbon nanotubes(SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki-Miyaura coupling reaction, J. Mol. Catal. A:Chem. 382(2014) 106-113.

    11. [11]

      [11] J.F. Hu, Y.P. Wang, M. Han, et al., A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki-Miyaura reaction, Catal. Sci. Technol. 2(2012) 2332-2340.

    12. [12]

      [12] Q. Xu, J.K. Sun, Functional materials derived from open framework templates/precursors:synthesis and applications, Energy Environ. 7(2014) 2071-2100.

    13. [13]

      [13] M. Bakherad, S. Jajarmi, A dithizone-functionalized polystyrene resin-supported Pd(Ⅱ) complex as an effective catalyst for Suzuki, Heck, and copper-free Sonogashira reactions under aerobic conditions in water, J. Mol. Catal. A:Chem. 370(2013) 152-159.

    14. [14]

      [14] X. Xu, Y. Li, Y.T. Gong, et al., Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J. Am. Chem. Soc. 134(2012) 16987-16990.

    15. [15]

      [15] M. Li, X. Xu, Y. Gong, et al., Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds, Green Chem. 16(2014) 4371.

    16. [16]

      [16] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133(2011) 2362-2365.

    17. [17]

      [17] M. Hu, J. Reboul, S. Furukawa, et al., Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, J. Am. Chem. Soc. 134(2012) 2864-2867.

    18. [18]

      [18] L. Zhang, Z. Su, F. Jiang, et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions, Nanoscale 6(2014) 6590-6602.

    19. [19]

      [19] X. Zhao, H. Zhao, T. Zhang, et al., One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction, J. Mater. Chem. A 2(2014) 11666.

    20. [20]

      [20] W. Chaikittisilp, M. Hu, H.J. Wang, et al., Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem. Commun. 48(2012) 7259-7261.

    21. [21]

      [21] X.L. Yan, X.J. Li, Z.F. Yan, S. Komarneni, Porous carbons prepared by direct carbonization of MOFs for supercapacitors, Appl. Surf. Sci. 308(2014) 306-310.

    22. [22]

      [22] F. Afsahi, H.V. Thang, S. Mikhailenko, S. Kaliaguine, Electrocatalyst synthesized from metal organic frameworks, J. Power Sources 239(2013) 415-423.

    23. [23]

      [23] W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials:synthesis of MOF-derived nanoporous carbons and their promising applications, J. Mater. Chem. A 1(2013) 14-19.

    24. [24]

      [24] H.L. Jiang, B. Liu, Y.Q. Lan, et al., From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake, J. Am. Chem. Soc. 133(2011) 11854-11857.

    25. [25]

      [25] J. Kim, N.D. McNamara, T.H. Her, J.C. Hicks, Carbothermal reduction of Ti-modified IRMOF-3:an adaptable synthetic method to support catalytic nanoparticles on carbon, ACS Appl. Mater. Interfaces 5(2013) 11479-11487.

    26. [26]

      [26] G. Srinivas, V. Krungleviciute, Z.X. Guo, T. Yildirim, T. Yildirim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, Energy Environ. 7(2014) 335-342.

    27. [27]

      [27] T. Ahnfeldt, N. Guillou, D. Gunzelmann, et al.,[Al4(OH)2(OCH3)4(H2Nbdc)3]·xH2O:a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick, Angew. Chem. Int. Ed. Engl. 48(2009) 5163-5166.

    28. [28]

      [28] Y.Y. Lu, W.W. Zhan, Y. He, et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties, ACS Appl. Mater. Interfaces 6(2014) 4186-4195.

    29. [29]

      [29] S.J. Yang, T. Kin, J.H. Im, et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity, Chem. Mater. 24(2012) 464-470.

    30. [30]

      [30] S.J. Yang, T. Kim, K. Lee, et al., Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity, Carbon 71(2014) 294-302.

    31. [31]

      [31] H.B. Aiyappa, P. Pachfule, R. Banerjee, S. Kurungot, Porous carbons from nonporous MOFs:influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des. 13(2013) 4195-4199.

    32. [32]

      [32] N.Z. Shang, S.T. Gao, X. Zhou, et al. Palladium nanoparticles encapsulated inside the pores of a metal-organic framework as a highly active catalyst for carbon-carbon cross-coupling RSC Adv. 4(2014) 54487-54493.

    33. [33]

      [33] L. Zhang, C. Feng, S.T. Gao, Z. Wang, C. Wang, Palladium nanoparticles supported on metal organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction, Catal. Commun. 61(2015) 21-25.

    34. [34]

      [34] X. Liu, L. Zhou, Y. Zhao, et al., Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor, ACS Appl. Mater. Interfaces 5(2013) 10280-10287.

    35. [35]

      [35] S.Y. Lin, X. Yang, L.Y. Yang, R.X. Zhou, Three-way catalytic performance of Pd/Ce0.67Zr0.33O2-Al2O3 catalysts:role of the different Pd precursors, Appl. Surf. Sci. 327(2015) 335-343.

    36. [36]

      [36] A. Maksic, Z. Rakocevic, M. Smiljanic, M. Nenadovic, S. Strbac, Methanol oxidation on Pd/Pt(poly) in alkaline solution, J. Power Sources 273(2015) 724-734.

    37. [37]

      [37] E. Negro, A.H.A.M. Videla, V. Baglio, et al., Fe-N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells, Appl. Catal. B:Environ. 166-167(2015) 75-83.

    38. [38]

      [38] S.Z. Wu, Y.X. Yu, W.D. Zhang, Processing graphitic carbon nitride for improved photocatalytic activity, Mat. Sci. Semicon. Proc. 24(2014) 15-20.

    39. [39]

      [39] B. Liu, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc. 130(2008) 5390-5391.

    40. [40]

      [40] M.R. Feyyaz Durap, M. Aydemir, S. Ö zkar, Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst, Appl. Catal. A:Gen. 382(2010) 339-344.

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    3. [3]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    4. [4]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    5. [5]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    6. [6]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    7. [7]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    8. [8]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    11. [11]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    12. [12]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    15. [15]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    18. [18]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    19. [19]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    20. [20]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

Metrics
  • PDF Downloads(0)
  • Abstract views(693)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return