Citation: Na Li, Xue Zhang, Gao-Chen Gu, Hao Wang, Damian Nieckarz, Paweł Szabelski, Yang He, Yu Wanga, Jing-Tao Lü, Hao Tang, Lian-Mao Peng, Shi-Min Hou, Kai Wu, Yong-Feng Wang. Sierpiński-triangle fractal crystals with the C3v point group[J]. Chinese Chemical Letters, ;2015, 26(10): 1198-1202. doi: 10.1016/j.cclet.2015.08.006 shu

Sierpiński-triangle fractal crystals with the C3v point group

  • Corresponding author: Paweł Szabelski,  Kai Wu,  Yong-Feng Wang, 
  • Received Date: 2 August 2015
    Available Online: 6 August 2015

    Fund Project: This work was jointly supported by National Natural Science Foundation of China (Nos. 21373020, 21403008, 61321001, 21433011, 21522301, 21133001, 21333001, 913000002) (Nos. 21373020, 21403008, 61321001, 21433011, 21522301, 21133001, 21333001, 913000002) and the Research Fund for the Doctoral Program of Higher Education (No. 20130001110029). (Nos. 2014CB239302, 2013CB933404, 2011CB808702)

  • Self-similar fractals are of importance in both science and engineering. Metal-organic Sierpiński triangles are particularly attractive for applications in gas separation, catalysis and sensing. Such fractals are constructed in this study by using 120° V-shaped 4, 4"-dicyano-1, 1':3', 1"-terphenyl molecules and Fe atoms on Au(1 1 1), and studied in detail by low-temperature scanning tunneling microscopy. Density functional theory calculations are employed to rationalize the invisible Fe atoms in STM images. Monte Carlo simulations are performed to understand the formation mechanism of the surface-supported fractal crystals.
  • 加载中
    1. [1]

      [1] B.B. Mandelbrot, The Fractal Geometry of the Nature, W.H. Freeman and Company, 1982.

    2. [2]

      [2] E. van Veen, A. Tomadin, M.I. Katsnelson, S. Yuan, M. Polini, Transport and optical properties of an electron gas in a Sierpinski carpet,http://es.arxiv.org/abs/1504.00628.

    3. [3]

      [3] G.R. Newkome, C. Shreiner, Dendrimers derived from 1 to 3 branching motifs, Chem. Rev. 110(2010) 6339-6442.

    4. [4]

      [4] K.I. Sugiura, H. Tanaka, T. Matsumoto, T. Kawai, Y. Sakata, A Mandala-patterned bandanna-shaped porphyrin oligomer, C1224H1350N84Ni20O88, having a unique size and geometry, Chem. Lett. 28(1999) 1193.

    5. [5]

      [5] G.R. Newkome, P. Wang, C.N. Moorefield, et al., Nanoassembly of a fractal polymer:a molecular "Sierpiński hexagonal gasket", Science 312(2006) 1782-1785.

    6. [6]

      [6] K. Fujibayashi, R. Hariadi, S.H. Park, E. Winfree, S. Murata, Toward reliable algorithmic self-assembly of DNA tiles:a fixed-width cellular automaton pattern, Nano Lett. 8(2008) 1791-1797.

    7. [7]

      [7] R. Sarkar, K. Guo, C.N. Moorefield, et al., One-step multicomponent self-assembly of a first generation Sierpiński triangle:from fractal design to chemical reality, Angew. Chem. Int. Ed. 53(2014) 12182-12185.

    8. [8]

      [8] M. Wang, C. Wang, X.Q. Hao, et al., Hexagon wreaths:self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands, J. Am. Chem. Soc. 136(2014) 6664-6671.

    9. [9]

      [9] H. Röder, E. Hahn, H. Brune, J.P. Bucher, K. Kern, Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces, Nature 366(1993) 141-143.

    10. [10]

      [10] H. Brune, C. Bomainczyk, H. Röder, K. Kern, Mechanism of the transition from fractal to dendritic growth of surface aggregates, Nature 369(1994) 469-471.

    11. [11]

      [11] J. Shang, Y. Wang, M. Chen, et al., Assembling molecular Sierpiński triangle fractals, Nat. Chem. 7(2015) 389-393.

    12. [12]

      [12] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n, Science 283(1999) 1148-1150.

    13. [13]

      [13] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.

    14. [14]

      [14] C.E. Wilmer, M. Leaf, C.Y. Lee, et al., Large-scale screening of hypothetical metalorganic frameworks, Nat. Chem. 4(2012) 83-89.

    15. [15]

      [15] E.D. Bloch, W.L. Queen, R. Krishna, et al., Hydrocarbon separations in a metalorganic framework with open iron(II) coordination sites, Science 355(2012) 1606-1610.

    16. [16]

      [16] Z.R. Herm, B.M. Wiers, J.A. Mason, et al., Separation of hexane isomers in a metalorganic framework with triangular channels, Science 340(2013) 960-964.

    17. [17]

      [17] Y. Inokuma, S. Yoshioka, J. Ariyoshi, et al., X-ray analysis on the nanogram to the microgram scale using porous complexes, Nature 495(2013) 461-466.

    18. [18]

      [18] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013), http://dx.doi.org/10.1126/science.1230444.

    19. [19]

      [19] P. Deria, J.E. Mondloch, O. Karagiaridi, et al., Beyond post-synthesis modification:evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43(2014) 5896-5912.

    20. [20]

      [20] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D naphthalenedisulfonate-cadmium coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand:structure and catalytic property, Chin. Chem. Lett. 25(2014) 243-246.

    21. [21]

      [21] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.

    22. [22]

      [22] T.M. McDonald, J.A. Mason, X. Kong, et al., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature 519(2015) 303-308.

    23. [23]

      [23] X.X. Liu, Y. Wang, W.G. Tian, W. Yang, Z.M. Sun, Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands, Chin. Chem. Lett. 26(2015) 641-645.

    24. [24]

      [24] D. Nieckarz, P. Szabelski, Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles, Chem. Comm. 50(2014) 6843-6845.

    25. [25]

      [25] S. Steppanow, N. Lin, D. Payer, et al., Surface assisted assembly of 2D metalorganic networks that exhibit unusual threefold coordination symmetry, Angew. Chem. Int. Ed. 46(2007) 710-713.

    26. [26]

      [26] U. Schlickum, R. Decker, F. Klappenberger, et al., Metal-organic honeycomb nanomeshes with tunable cavity size, Nano Lett. 7(2007) 3813-3817.

    27. [27]

      [27] U. Schlickum, F. Klappenberger, R. Decker, et al., Surface-confined metal-organic nanostructures from Co-directed assembly of linear terphenyl-dicarbonitrile linkers on Ag(111), J. Phys. Chem. C 114(2010) 15602-15606.

    28. [28]

      [28] J. Xu, Q.D. Zeng, Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM, Chin. Chem. Lett. 24(2013) 177-182.

    29. [29]

      [29] D. Nieckarz, P. Szabelski, Understanding pattern formation in 2D metal-organic coordination systems on solid surfaces, J. Phys. Chem. C 117(2013) 11229-11241.

    30. [30]

      [30] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 2002.

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    4. [4]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    5. [5]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    6. [6]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Ruixin LiuFeng ShiYanping XiaHaibing ZhuJiawen CaoKai PengChuanli RenJuan LiZhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664

    9. [9]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    10. [10]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    11. [11]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    12. [12]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    13. [13]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    14. [14]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    15. [15]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    16. [16]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    20. [20]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(0)
  • Abstract views(764)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return