-
[1]
[1] B.B. Mandelbrot, The Fractal Geometry of the Nature, W.H. Freeman and Company, 1982.
-
[2]
[2] E. van Veen, A. Tomadin, M.I. Katsnelson, S. Yuan, M. Polini, Transport and optical properties of an electron gas in a Sierpinski carpet,http://es.arxiv.org/abs/1504.00628.
-
[3]
[3] G.R. Newkome, C. Shreiner, Dendrimers derived from 1 to 3 branching motifs, Chem. Rev. 110(2010) 6339-6442.
-
[4]
[4] K.I. Sugiura, H. Tanaka, T. Matsumoto, T. Kawai, Y. Sakata, A Mandala-patterned bandanna-shaped porphyrin oligomer, C1224H1350N84Ni20O88, having a unique size and geometry, Chem. Lett. 28(1999) 1193.
-
[5]
[5] G.R. Newkome, P. Wang, C.N. Moorefield, et al., Nanoassembly of a fractal polymer:a molecular "Sierpiński hexagonal gasket", Science 312(2006) 1782-1785.
-
[6]
[6] K. Fujibayashi, R. Hariadi, S.H. Park, E. Winfree, S. Murata, Toward reliable algorithmic self-assembly of DNA tiles:a fixed-width cellular automaton pattern, Nano Lett. 8(2008) 1791-1797.
-
[7]
[7] R. Sarkar, K. Guo, C.N. Moorefield, et al., One-step multicomponent self-assembly of a first generation Sierpiński triangle:from fractal design to chemical reality, Angew. Chem. Int. Ed. 53(2014) 12182-12185.
-
[8]
[8] M. Wang, C. Wang, X.Q. Hao, et al., Hexagon wreaths:self-assembly of discrete supramolecular fractal architectures using multitopic terpyridine ligands, J. Am. Chem. Soc. 136(2014) 6664-6671.
-
[9]
[9] H. Röder, E. Hahn, H. Brune, J.P. Bucher, K. Kern, Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces, Nature 366(1993) 141-143.
-
[10]
[10] H. Brune, C. Bomainczyk, H. Röder, K. Kern, Mechanism of the transition from fractal to dendritic growth of surface aggregates, Nature 369(1994) 469-471.
-
[11]
[11] J. Shang, Y. Wang, M. Chen, et al., Assembling molecular Sierpiński triangle fractals, Nat. Chem. 7(2015) 389-393.
-
[12]
[12] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3] n, Science 283(1999) 1148-1150.
-
[13]
[13] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.
-
[14]
[14] C.E. Wilmer, M. Leaf, C.Y. Lee, et al., Large-scale screening of hypothetical metalorganic frameworks, Nat. Chem. 4(2012) 83-89.
-
[15]
[15] E.D. Bloch, W.L. Queen, R. Krishna, et al., Hydrocarbon separations in a metalorganic framework with open iron(II) coordination sites, Science 355(2012) 1606-1610.
-
[16]
[16] Z.R. Herm, B.M. Wiers, J.A. Mason, et al., Separation of hexane isomers in a metalorganic framework with triangular channels, Science 340(2013) 960-964.
-
[17]
[17] Y. Inokuma, S. Yoshioka, J. Ariyoshi, et al., X-ray analysis on the nanogram to the microgram scale using porous complexes, Nature 495(2013) 461-466.
-
[18]
[18] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013), http://dx.doi.org/10.1126/science.1230444.
-
[19]
[19] P. Deria, J.E. Mondloch, O. Karagiaridi, et al., Beyond post-synthesis modification:evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43(2014) 5896-5912.
-
[20]
[20] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D naphthalenedisulfonate-cadmium coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand:structure and catalytic property, Chin. Chem. Lett. 25(2014) 243-246.
-
[21]
[21] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.
-
[22]
[22] T.M. McDonald, J.A. Mason, X. Kong, et al., Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature 519(2015) 303-308.
-
[23]
[23] X.X. Liu, Y. Wang, W.G. Tian, W. Yang, Z.M. Sun, Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands, Chin. Chem. Lett. 26(2015) 641-645.
-
[24]
[24] D. Nieckarz, P. Szabelski, Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles, Chem. Comm. 50(2014) 6843-6845.
-
[25]
[25] S. Steppanow, N. Lin, D. Payer, et al., Surface assisted assembly of 2D metalorganic networks that exhibit unusual threefold coordination symmetry, Angew. Chem. Int. Ed. 46(2007) 710-713.
-
[26]
[26] U. Schlickum, R. Decker, F. Klappenberger, et al., Metal-organic honeycomb nanomeshes with tunable cavity size, Nano Lett. 7(2007) 3813-3817.
-
[27]
[27] U. Schlickum, F. Klappenberger, R. Decker, et al., Surface-confined metal-organic nanostructures from Co-directed assembly of linear terphenyl-dicarbonitrile linkers on Ag(111), J. Phys. Chem. C 114(2010) 15602-15606.
-
[28]
[28] J. Xu, Q.D. Zeng, Construction of two-dimensional (2D) H-bonded supramolecular nanostructures studied by STM, Chin. Chem. Lett. 24(2013) 177-182.
-
[29]
[29] D. Nieckarz, P. Szabelski, Understanding pattern formation in 2D metal-organic coordination systems on solid surfaces, J. Phys. Chem. C 117(2013) 11229-11241.
-
[30]
[30] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 2002.